Opendata, web and dolomites

ANTIViR SIGNED

Molecular mechanisms of interferon-induced antiviral restriction and signalling

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ANTIViR" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE 

Organization address
address: RUE DE TOLBIAC 101
city: PARIS
postcode: 75654
website: www.inserm.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙499˙793 €
 EC max contribution 1˙499˙793 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE FR (PARIS) coordinator 1˙499˙793.00

Map

 Project objective

Interferons (IFNs), which are signalling proteins produced by infected cells, are the first line of defence against viral infections. IFNs induce, in infected and neighbouring cells, the expression of hundreds of IFN-stimulated genes (ISGs). The ISGs in turn induce in cells a potent antiviral state, capable of preventing replication of most viruses, including Human Immunodeficiency Virus type 1 (HIV-1) and influenza A virus (FLUAV). Identifying the antiviral ISGs and understanding their mechanisms of action is therefore crucial to progress in the fight against viruses. ISGs playing a role in the antiviral state have been identified, such as human MX1, a well-known antiviral factor able to restrict numerous viruses including FLUAV, and MX2, an HIV-1 inhibitor. Both proteins bind to viral components but their detailed mechanisms of action, as well as the consequences of restriction on the activation of the innate immune system, remain unclear. Moreover, our preliminary work shows that additional anti-HIV-1 and anti-FLUAV ISGs remain to identify. In this context, this proposal seeks an ERC StG funding to explore 3 major aims: 1) unravelling the mechanisms of antiviral action of MX proteins, by taking advantage of their similar structure and engineered chimeric proteins, and by using functional genetic screens to identify their cofactors; 2) investigating the consequences of incoming virus recognition by MX proteins on innate immune signalling, by altering their expression in target cells and measuring the cell response in terms of gene induction and cytokine production; 3) identifying and characterizing new ISGs able to inhibit viral replication with a combination of powerful approaches, including a whole-genome CRISPR/Cas9 knock-out screen. Overall, this proposal will provide a better understanding of the molecular mechanisms involved in the antiviral effect of IFN, and may guide future efforts to identify novel therapeutic targets against major pathogenic viruses.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ANTIVIR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ANTIVIR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SUBMODULAR (2019)

The Power of Randomness and Continuity in Submodular Optimization

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More