Opendata, web and dolomites

COINFLIP SIGNED

Coupled Organic Inorganic Nanostructures for Fast, Light-Induced Data Processing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 COINFLIP project word cloud

Explore the words cloud of the COINFLIP project. It provides you a very rough idea of what is the project "COINFLIP" about.

surface    exploited    converting    energy    probed    creates    electronic    utilizing    molecules    beam    fibers    modern    speed    excel    transmission    photonic    pivotal    lt    pursued    lifetimes    silicon    switches    colloids    optical    first    resonances    thin    modifying    conductive    dissipation    act    fabricate    transfer    computing    interconnects    semiconductor    activated    beams    rates    arise    heat    materials    chemistry    macroscopic    absorption    excited    sensitizer    optoelectronic    sensitizers    assembly    lived    bit    accelerates    time    reward    times    pave    light    organic    efficient    combining    hybrid    external    nanocrystals    data    interactions    mechanism    temporarily    compatibility    slow    unprecedented    interface    transistors    faster    solid    inorganic    5ps    pump    nanostructures    charge    play    linkers    nanocrystalline    films    photonics    ultrafast    switching    molecular    self    multiple    ps    signals    units    fj    additional   

Project "COINFLIP" data sheet

The following table provides information about the project.

Coordinator
EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Organization address
address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074
website: www.uni-tuebingen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙497˙375 €
 EC max contribution 1˙497˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) coordinator 1˙497˙375.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COINFLIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COINFLIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

inSight (2019)

Moving a novel gene therapy paradigm to treat blindness to the market

Read More  

SLAMseq (2019)

SLAMseq: Temporal resolution in gene expression profiling across multiple platforms

Read More