Opendata, web and dolomites

COINFLIP SIGNED

Coupled Organic Inorganic Nanostructures for Fast, Light-Induced Data Processing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 COINFLIP project word cloud

Explore the words cloud of the COINFLIP project. It provides you a very rough idea of what is the project "COINFLIP" about.

films    absorption    dissipation    activated    speed    combining    lt    rates    assembly    interconnects    act    resonances    lived    pursued    sensitizer    linkers    bit    units    energy    5ps    molecules    electronic    beam    faster    external    fibers    modifying    photonic    transmission    efficient    nanostructures    chemistry    ultrafast    fj    unprecedented    photonics    pave    pivotal    semiconductor    first    accelerates    self    creates    utilizing    optoelectronic    hybrid    colloids    mechanism    macroscopic    switching    organic    signals    play    temporarily    pump    slow    nanocrystalline    additional    sensitizers    light    excited    transfer    optical    probed    ps    conductive    nanocrystals    materials    compatibility    heat    reward    converting    exploited    lifetimes    times    time    data    beams    excel    inorganic    charge    solid    switches    surface    fabricate    multiple    thin    arise    molecular    computing    transistors    modern    interactions    silicon    interface   

Project "COINFLIP" data sheet

The following table provides information about the project.

Coordinator
EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Organization address
address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074
website: www.uni-tuebingen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙497˙375 €
 EC max contribution 1˙497˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) coordinator 1˙497˙375.00

Map

 Project objective

The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COINFLIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COINFLIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

PEGASOS (2019)

Photon Emitting Gated Arrays for Scalable On-chip quantum Systems

Read More  

SoftHandler (2019)

Commercial feasibility of an integrated soft robotic system for industrial handling

Read More