Opendata, web and dolomites


3DProSeed: the first ready-to-use, pre-assembled, hydrogel microtiter plate for 3D cell culturess

Total Cost €


EC-Contrib. €






 3DProSeed project word cloud

Explore the words cloud of the 3DProSeed project. It provides you a very rough idea of what is the project "3DProSeed" about.

stimuli    2d    2018    failures    tissues    market    encapsulating    inside    screening    quantified    discoveries    drugs    reproducibility    animal    solutions    discovery    cell    significantly    assembled    compound    15    found    tool    rate    drug    vivo    stages    successfully    96    ready    surface    plates    aberrantly    mimic    22    successful    21    first    giving    manufacturing    efficacy    poor    period    missed    trial    3d       flat    predictive       launch    microtiter    clinical    last    matrix    operative    organs    capital    behaviours    patented    provides    compounds    3dproseed    progress    differ    power    assays    molecule    fast    investment    company    workflow    simplicity    environment    handling    human    integration    impacting    ones    hydrogel    realistically    vitro    stage    screenings    10    predictable    mostly    revenues    ing    consumable    difficult    physiological    data    pharmaceuticals    consistency    bench    culture    billion    cagr2013    intensive    contrast    cultures    12    handle    reduce    advantages   

Project "3DProSeed" data sheet

The following table provides information about the project.


Organization address
address: TRAMSTRASSE 77
city: ZURICH
postcode: 8050
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.5. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing)
2. H2020-EU.2.1.3. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2018-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECTICA TECHNOLOGIES AG CH (ZURICH) coordinator 50˙000.00


 Project objective

Capital investment in new pharmaceuticals to get from bench to clinical trial is estimated to be $1 billion per successful molecule, and only 10% of the compounds progress successfully through clinical development. Cell-based assays screenings are the key tool used to assess the potential efficacy of a new compound in drug discovery, as it provides a simple, fast, and cost-effective approach to avoid large-scale and cost-intensive animal testing at early stages. Therefore, the development of in vitro cell-based systems that can more realistically mimic the in vivo cell behaviours is a raising market, with a CAGR2013-2018 of 12.4% growth rate and quantified in $21.6 billion by 2018. Drug research cell-based assays are mostly conducted with cell cultures on flat surface (2D), but they differ from human tissues significantly and can respond aberrantly to stimuli, resulting in missed discoveries and late-stage clinical failures of drugs in development. In contrast, 3D cell systems have a greater predictable power as they can better mimic the physiological environment in organs and tissues. Still, 2D cell culture systems offer advantages like the simplicity of handling and high data reproducibility that are not found in the current 3D cell systems. The last ones are very difficult to handle and not ready-to-use ones, giving poor consistency, data reproducibility and poor workflow integration. In response, we have developed 3DProSeed, the first ready-to-use solutions in the 3D cell culture market. Based on a patented novel process for manufacturing and encapsulating the cell growth matrix, known as hydrogel, inside 96-microtiter plates, we will be able to launch to the market the first ready-to-use, pre-assembled, hydrogel-based consumable products for pre-clinical screening development. As a result, 3DProSeed will reduce the operative cost up of R&D to 15%, will increase predictive efficacy of assays, impacting on our company with €15.22 M revenues after 5-years period.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DPROSEED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DPROSEED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.;H2020-EU.2.1.3.;H2020-EU.2.3.1.;H2020-EU.2.1.2.)

denovoSkin (2018)

Personalized, bio-engineered skin grafts for the permanent treatment of skin defects.

Read More  

STAR (2018)

Safe, Transparent, Active and Reliable mineral sunscreen technology

Read More  


New ElectroSTATIC Spraying Process of Two-Component, Solvent-Free, Fast-Curing, Liquid Resins

Read More