Opendata, web and dolomites


Noble Metal Loaded Oxygen-deficient Mesoporous Tungsten Trioxide for Green Catalysis under Solar Light

Total Cost €


EC-Contrib. €






Project "NOMTGCS" data sheet

The following table provides information about the project.


Organization address
address: NEWPORT ROAD 30-36
postcode: CF24 ODE

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-03-05   to  2021-03-04


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CARDIFF UNIVERSITY UK (CARDIFF) coordinator 195˙454.00


 Project objective

With the increasingly serious energy and environmental problems caused by the combustion of fossil fuels, the development of efficient solar light driven photocatalysts for green chemical synthesis is an urgent task at present. In this project, the synthesis and solar light driven green catalytic applications of noble metal (Au, Pd, or Au-Pd) loaded oxygen deficient mesoporous tungsten trioxide are proposed. The objectives of this research proposal are to use the as-prepared photocatalysts for the high selective synthesis of hydrogen peroxide from water and molecular oxygen without the usage of hydrogen gas, and to use the in-situ formed hydrogen peroxide for directly oxidation of alcohols and primary carbon-hydrogen bonds in toluene with high selectivity under solar light. A series of mesoporous tungsten trioxide can be facilely prepared by a hard template replicating method using mesoporous silica as template and phosphotungstic acid as a precursor. Oxygen deficient mesoporous tungsten trioxide will be prepared by hydrogenation treatment under different temperature. The interconnected mesopores in tungsten trioxide are beneficial for the adsorption of noble metal precursors. Noble metal nanocrystals would be formed by in-situ reduction on the oxygen deficient mesoporous tungsten trioxide under solar light irradiation. The special heterojunction of noble metal nanoparticles and oxygen deficient mesoporous tungsten trioxide semiconductor will result in high-performance, stable novel photocatalysts for green catalysis under solar light. The new catalytic concepts by the utilization of solar light for highly efficient green chemical synthesis proposed in this project will provide great benefits for both the whole chemical industry and our environment.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOMTGCS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOMTGCS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More