Opendata, web and dolomites

iSPY SIGNED

Immobilized proteins in porous materials – Structural studies by Pulse EPR dipolar spectroscopY

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "iSPY" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT ANTWERPEN 

Organization address
address: PRINSSTRAAT 13
city: ANTWERPEN
postcode: 2000
website: www.ua.ac.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 160˙800 €
 EC max contribution 160˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN BE (ANTWERPEN) coordinator 160˙800.00

Map

 Project objective

Nature is by far the most versatile chemist and modern research efforts have harnessed the power of Nature by using biomolecules such as proteins as building blocks or targets for various technological applications. In many cases the immobilization of a protein in a synthetic matrix is essential. In particular protein-porous material hybrids have received much attention but their preparation have been non-trivial, often limited by the size compatibility between the pore and the protein and the surface properties. The quest for a suitable protein-matrix combination not only requires extensive synthetic optimization, but also the development of appropriate methodologies that can be used to determine the effect of the matrix on the structure and stability of the protein. In this multidisciplinary action, the stabilities, structures and dynamics of heme proteins (globins) immobilized in mesoporous silica or titania will be studied by EPR. This class of hybrid materials are themselves also of great interest because of potential electrochemical biosensing and biocatalysis applications. Novel orthogonally spin-labeled globins will be prepared and incorporated into (modified) mesoporous silica and titania. Pulse dipolar spectroscopy will be used to measure nanometric distance constraints within the free and immobilized globins. Combined with computational models, these measurements will provide unique insights into effects of incorporation on the tertiary structures and conformational flexibilities of the proteins. This action will not only result in the development of a generic analytical toolbox, based on spin-label EPR, for the characterization of proteins immobilized in matrices, but also lead to advances in the understanding and preparation of protein-porous material hybrids.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ISPY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ISPY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

THE CROSSMODAL BRAIN (2020)

Neural mechanisms of crossmodal activity in blind and sighted individuals

Read More  

TRANSCAMUS (2020)

NGOs, Transnational Networks and the Transformation of Muslim Communities in Cambodia

Read More  

MULTIRES (2019)

MULTI-level framework to enhance seismic RESilience of RC buildings

Read More