Opendata, web and dolomites

ECOMAT SIGNED

Encapsulation and contacting of two-dimensional materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ECOMAT" data sheet

The following table provides information about the project.

Coordinator
GESELLSCHAFT FUR ANGEWANDTE MIKRO UND OPTOELEKTRONIK MIT BESCHRANKTERHAFTUNG AMO GMBH 

Organization address
address: OTTO BLUMENTHAL STRASSE
city: AACHEN
postcode: 52074
website: www.amo.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    GESELLSCHAFT FUR ANGEWANDTE MIKRO UND OPTOELEKTRONIK MIT BESCHRANKTERHAFTUNG AMO GMBH DE (AACHEN) coordinator 159˙460.00

Map

 Project objective

Two dimensional materials such as graphene and transition metal dichalcogenide (TMDC) are very sensitive to surface adsorbates and thus require proper encapsulation. In addition, functional devices based on those materials, like transistors, diodes or electro-optical modulators require high-k gate dielectrics to be deposited on top of the material. However, the deposition of high quality dielectric layers ontop of 2D materials is very challenging due to their inert surface. The project ECOMAT addresses the important challenge of depositing high-k dielectrics on top of 2D materials. In particular, the experienced researcher Dr. Barbara Canto will explore different routes to encapsulate graphene and MoS2, which is the most explored TMDC material, with different high-k dielectrics using a combination of atomic layer deposition and surface functionalization using seed layers. The key control parameters for those layers are dielectric constant, breakdown voltage, charge traps, minimal thickness achievable, and gas barrier properties, which will be characterized by electrical and spectroscopic methods. Finally a new route for fabricating low-resistive edge contacts to MoS2 will be explored, building up on encapsulated MoS2 layers. This contacting scheme is expected to significantly reduce contamination of the MoS2 layer during processing, while offering low-resistive contacts and thus will significantly increase the performance of electronic device based on MoS2. This interdisciplinary research activity builds up on the experience of Dr. Canto in the field of material science and physics and utilizes the infrastructure and knowledge at AMO on high-k dielectrics and electronic devices.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ECOMAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ECOMAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

STOPFIRE (2019)

Emergency Decision Support System of Offshore Platform Fires

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More