Opendata, web and dolomites

MICHELANGELO SIGNED

MultiphasIc NanoreaCtors for HEterogeneous CataLysis via SmArt ENGinEering of TaiLored DispersiOns

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MICHELANGELO project word cloud

Explore the words cloud of the MICHELANGELO project. It provides you a very rough idea of what is the project "MICHELANGELO" about.

savings    multiphasic    conventional    nps    performance    slurry    selective    area    interface    balance    hydrophilic    conducting    operation    micro    experiments    microreactors    lipophilic    assembly    particle    times    transfer    cycle    flow    mild    nanoscale    hlb    designed    efficiency    milder    membrane    combining    innovation    keeping    mixing    shapes    simulations    surface    intensification    affording    bubbles    accessibility    external    reaction    improvement    amphiphilic    catalysts    sizes    erc    examine    degree    recycling    liquid    solid    efficient    energy    suffer    extensively    resilient    stability    industry    gas    np    packed    reactors    michelangelo    marbles    catalyst    continuous    active    flexibility    reengineer    radical    beds    contact    prepare    nano    nanoreactors    stimuli    interplay    functions    guarantee    overcome    reactions    stabilized    catalytic    reactants    layouts    mass    competitiveness    chemical    limitations    dispersions    generate    heat   

Project "MICHELANGELO" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙956˙720 €
 EC max contribution 1˙956˙720 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙956˙720.00

Map

 Project objective

Gas-liquid-solid (G/L/S) multiphasic reactors are extensively used in the chemical industry for catalytic processes. However, conventional reactors, such as packed beds and slurry reactors, typically suffer from resilient mass/heat transfer limitations due to their low specific interface areas, long mixing times, and a reduced accessibility of the gas reactants to the catalyst surface. To overcome these limitations, continuous flow microreactors and catalytic membrane reactors have been considered for increasing the G/L interface area, but these systems require complex equipment and still do not guarantee an efficient L/S contact at the catalyst surface. For a major improvement on current systems in terms of cost efficiency and energy savings, G/L/S reactors operating at the nanoscale are required. The aim of this ERC project is to design robust particle-stabilized G/L dispersions (i.e. micro/nano-bubbles and liquid marbles) as highly efficient G/L/S nanoreactors for conducting catalytic reactions at mild conditions.

We will (i) prepare NPs with defined sizes, shapes, hydrophilic-lipophilic balance (HLB), including catalytic functions; (ii) generate particle-stabilized bubbles and liquid marbles affording highly active and selective reactions at the G/L/S interface with NP recycling after each catalytic cycle using external stimuli; examine the interplay between the NP assembly at the G/L interface and the catalytic properties along the reaction by combining well-designed experiments with simulations; and (iv) reengineer G/L/S multiphasic reactors using our particle-stabilized nanoreactors to achieve a high catalytic performance at milder operation conditions compared to conventional reactors while keeping a high degree of stability and flexibility at reduced layouts.

Through innovation on both amphiphilic catalysts and process intensification, MICHELANGELO will deliver a radical step change towards a higher efficiency and competitiveness in the process industry.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICHELANGELO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICHELANGELO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More