Opendata, web and dolomites

INTREE SIGNED

How and when does climate influence carbon sink activity? Multi-temporal analysis of wood formation in conifers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "INTREE" data sheet

The following table provides information about the project.

Coordinator
EIDGENOSSICHEN FORSCHUNGSANSTALT FUR WALD SCHNEE UND LANDSCHAFT 

Organization address
address: ZUERCHERSTRASSE 111
city: BIRMENSDORF
postcode: 8903
website: www.wsl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOSSICHEN FORSCHUNGSANSTALT FUR WALD SCHNEE UND LANDSCHAFT CH (BIRMENSDORF) coordinator 175˙419.00

Map

 Project objective

Forest carbon sequestration plays a crucial role in climate change mitigation. As evidenced by recent studies, tree carbon uptake is directly controlled by environmental influence on wood (xylem) formation processes. Current knowledge on how and when climate influences these processes mostly come from short-term direct (weekly xylogenesis monitoring) and long-term indirect (width and anatomy of annual tree rings) analysis of tree growth. Nevertheless these approaches, related to different scales of investigation, cannot provide a complete overview of the complex climate influence on tree carbon sequestration, when used separately. INTREE aims at quantitatively assess multi-temporal climate influence on tree carbon sequestration in temperate and boreal forests. The project will focus on two conifer species, Picea abies and Picea mariana, along two elevation gradients in the Alps and one latitude gradient in Canada. A novel approach, the analysis of intra-ring wood anatomy along tree-ring series, will be used to create a link between different scales of investigation. Xylogenesis monitoring, tree ring analysis, and intra-ring quantitative wood anatomy, will be innovatively used jointly to assess intra-seasonal to multi-decadal climate variation influence on xylem formation processes. This new knowledge will be used to quantify climate influence on xylem cell number, size, and wall thickness in tree rings, and therefore to assess how climate variations affect the amount of carbon annually stock in the tree stem. INTREE will promote the integration of different expertizes, methods and scales of investigation in climate change-related research. Outcomes will provide a unique contribution to current understanding of forest carbon sequestration, and provide mechanistic information for vegetation and carbon process-based models. In conclusion, INTREE will improve the scientific knowledge necessary to develop climate change mitigation actions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INTREE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INTREE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

TIPTOP (2019)

Tensoring Positive Maps on Operator Structures

Read More  

RESTRICTIONAPP (2019)

A multilinear approach to the restriction problem with applications to geometric measure theory, the Schrödinger equation and inverse problems

Read More