Opendata, web and dolomites


Nanometre scale imaging of magnetic perovskite oxide thin films using scanning transmission electron microscopy

Total Cost €


EC-Contrib. €






Project "MAGIMOX" data sheet

The following table provides information about the project.


Organization address
address: PRINSSTRAAT 13
postcode: 2000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 166˙320 €
 EC max contribution 166˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT ANTWERPEN BE (ANTWERPEN) coordinator 166˙320.00


 Project objective

Magnetic materials are a vital part of modern society, being important components in technologies such as magnetic resonance imaging machines and hard disk drives. A common strategy to both improve existing technologies and develop new ones, is miniaturization. The most striking example being the billion-fold increase in silicon semiconductor transistor density, which fundamentally changed society since its invention in the 60ies. However, this miniaturization trend now seems to come to a slow-down as devices are shrinking to sizes where hard physical limits are setting in, and being able to image these nanoscale devices becomes ever more important. Scanning transmission electron microscopy (STEM) is a widely used imaging technique used to study such nanometre scale devices, however it does not readily provide imaging of the magnetic properties at this scale. The perovskite oxides form a materials family, which exhibits a wide range of properties including magnetism. A similar miniaturization process has been used for these materials, where making them as nanometre thick films revealed new phenomena. The most exciting being multiferroics, where an applied electric field can change the magnetic structure, and vice versa. This has attracted much interest in both making and studying these oxide materials, especially their magnetic properties, due to the great potential for new device concepts. However, due to the small sizes of these films they're often very hard to study, especially when it comes to their nanoscale magnetic structure. This action will take advantage of recently developed fast electron STEM detectors to image the nanometre scale magnetic structures of these materials directly with unprecedented resolution. Using a high-end STEM equipped with such a detector, both the magnetic and crystal structure will be studied in the same microscope. This will enable highly correlated studies of the perovskites, giving a deeper understanding of these new phenomena.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGIMOX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGIMOX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More