Opendata, web and dolomites

NeuroMag SIGNED

Magnonic Matrix-Vector-Multiplier for Neural Network Applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NeuroMag project word cloud

Explore the words cloud of the NeuroMag project. It provides you a very rough idea of what is the project "NeuroMag" about.

artificial    index    of    yttrium    vector    transducers    neural    matrix    undergone    photonic    critical    device    performing    combined    compound    refractive    hardware    soft    detect    science    proof    intensively    skills    neuromag    operated    nanofabricate    bidirectionality    operation    waves    tuning    plan    magnetoelectric    linear    adjustable    machine    magnons    materials    excite    boost    multiplier    broadband    transformations    damping    ground    nanofabrication    technological    combination    career    demonstrator    power    microwave    efficiency    rapid    advantages    equivalent    modulation    media    interdisciplinary    paving    electro    magnetic    generate    effect    manipulate    spin    engineer    learning    interference    energy    training    researched    engineering    progress    networks    researcher    alternative    garnet    photonics    magnonic    full    velocity    optic    profile    implementations    scientific    local    breaking    scalable    iron    optical    wave    combines    physics   

Project "NeuroMag" data sheet

The following table provides information about the project.

Coordinator
INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM 

Organization address
address: KAPELDREEF 75
city: LEUVEN
postcode: 3001
website: www.imec.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 172˙800 €
 EC max contribution 172˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-22   to  2020-05-21

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM BE (LEUVEN) coordinator 172˙800.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Machine learning applications based on artificial neural networks have undergone rapid progress in recent years. To improve the power efficiency over current hardware, alternative implementations of a critical part of artificial neural networks, the matrix-vector multiplier performing large-scale linear transformations, have been intensively researched. Recently, a matrix-vector multiplier based on the interference of optical waves has been proposed in combination with local adjustable electro-optic modulation of the refractive index to enable training. NeuroMag’s objective is to implement such an interference-based matrix-vector multiplier using spin waves (magnons). Magnetoelectric compound materials will be used to engineer scalable broadband transducers with high potential energy efficiency to generate, detect, and manipulate spin waves. Distinct advantages of such a spin wave implementation over a photonic one are (i) the full bidirectionality of the system since transducers can be operated both to excite as well as detect spin waves and (ii) the large tuning range of the phase velocity of spin waves (equivalent to the refractive index in photonics) by the magnetoelectric effect. Magnetoelectric transducers and low-damping Yttrium Iron Garnet magnetic media will be combined to nanofabricate a demonstrator device and study its matrix-vector multiplier operation. Using an interdisciplinary approach that combines materials science, physics, microwave engineering, and device nanofabrication, NeuroMag thus targets the ground-breaking proof-of-concept of a magnonic matrix-vector multiplier and its operation, paving the way towards magnonic artificial neural networks. The combination of learning through research and a comprehensive training plan, including both scientific and technological as well as soft skills, will strongly enhance the researcher profile of the applicant and provide a boost for his future scientific career.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROMAG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUROMAG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More  

SpaTime_AnTB (2020)

Single-cell spatiotemporal analysis of Mycobacterium tuberculosis responses to antibiotics within host microenvironments

Read More