Explore the words cloud of the signalling dynamics project. It provides you a very rough idea of what is the project "signalling dynamics" about.
The following table provides information about the project.
Coordinator |
UNITED KINGDOM RESEARCH AND INNOVATION
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 271˙732 € |
EC max contribution | 271˙732 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2020 |
Duration (year-month-day) | from 2020-01-01 to 2022-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNITED KINGDOM RESEARCH AND INNOVATION | UK (SWINDON) | coordinator | 271˙732.00 |
2 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY | US (STANFORD) | partner | 0.00 |
G protein coupled receptors (GPCRs) are a class of membrane receptors that transmits extracellular signals into the cell. They can be activated by a diverse set of ligands including small molecules, hormones, neurotransmitters or photons and are targeted by a third of currently marketed drugs. Endogenous ligands and drugs may exhibit different efficacy profiles, ranging from full activation to complete inactivation of a signalling pathway. The key to the selective interaction with signalling partners in response to ligand binding lies in the conformational flexibility of the membrane receptors. Previous research has extensively studied the three-dimensional structures of GPCRs and their signalling. However, the link between active conformations and signalling is still missing. In the proposed project, first I will use exhaustive single-point mutagenesis coupled to functional assays to determine how the sequence and secondary structure of GPCRs contribute to signaling. Second, biophysical techniques studying protein conformations will help us to understand the connection between conformations and signalling outcome. These techniques give insights into the conformational fingerprints of the receptor. The link to signalling will be achieved by biasing the receptor towards a selected signalling partner either though addition of the selected signalling partner or the insertion of specific mutations tested in the first part of the project. Finally, I will use computational techniques to compare the activation of signalling partners in different GPCRs. With my research I hope to improve our understanding of the molecular basis of membrane protein function and contribute to the development of strategies for the design of more specific drugs with fewer side effects.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIGNALLING DYNAMICS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SIGNALLING DYNAMICS" are provided by the European Opendata Portal: CORDIS opendata.
Multiparametric imaging of glioblastoma tumour heterogeneity for supporting treatment decisions and accurate prognostic estimation
Read MoreDeterminants of genetic diversity: Important Factors For Ecosystem Resilience
Read MoreConstructing an evolutionary atlas of the immune landscape in lung cancer
Read More