Opendata, web and dolomites

ACCOPT SIGNED

ACelerated COnvex OPTimization

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ACCOPT" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE CATHOLIQUE DE LOUVAIN 

Organization address
address: PLACE DE L UNIVERSITE 1
city: LOUVAIN LA NEUVE
postcode: 1348
website: www.uclouvain.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 2˙090˙038 €
 EC max contribution 2˙090˙038 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme /ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE CATHOLIQUE DE LOUVAIN BE (LOUVAIN LA NEUVE) coordinator 2˙090˙038.00

Mappa

 Project objective

The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations. The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure. Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACCOPT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACCOPT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SVNeuroTrans (2018)

Mechanisms of neurotransmitter uptake and storage by synaptic vesicles

Read More  

PhaseControl (2018)

How cellular suicide programmes control phase transitions in fatty liver disease and liver cancer

Read More  

FatTryp (2018)

Exploring the hidden life of African trypanosomes: parasite fat tropism and implications for disease

Read More