Opendata, web and dolomites

HiMISER SIGNED

High resolution Miniature Implantable nerve Stimulator for Electroceutical Research (HiMISER)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HiMISER" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 150˙000.00

Map

 Project objective

In my ERC project ‘µThalys’, we are researching future concepts for electronic medical implants. The main idea is to replace current medical implants that typically consist of a titanium casing with electronics and a few lead wires with less intrusive, softer, tissue-like implants. These future generation implants consist of soft, modular, miniature transducer nodes that can act stand-alone, or be connected in a network, thus forming e.g. an implantable sensor network. Now, the main idea driving this proof-of-concept (PoC) project application is that the results of our research could be very suitable to apply in an upcoming field that uses peripheral autonomous nerve stimulation for therapeutic ends. This is mostly referred to as ‘electroceuticals’ or ‘bioelectric medicine’. Rather than using chemical drugs that circulate through the entire body, the field of electroceuticals aims to develop therapies based on local stimulation of a nerve of the autonomous nervous system that leads to the target organ. For example, instead of taking drugs to reduce stomach acid formation the part of the vagus nerve going to the stomach can be stimulated to achieve the same therapeutic effect while reducing side-effects. However, current nerve stimulation devices are rather crude and stimulate all fibres in a nerve using a cuff electrode. Moreover, they are too large to allow them to be used in small animal studies. The non-availability of a miniature, high-resolution peripheral nerve stimulator is therefore a significant roadblock for researchers in the field, and for the future application in humans. In this project, we will combine our existing research results from the µThalys project to create a new generation of stimulators. Miniature electronics devices, packaging and soft high-resolution neural implants will enable miniature proof-of-concept devices that demonstrate precision stimulation in peripheral nerves. First steps towards commercialisation will be taken.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIMISER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIMISER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

inhibiTOR (2020)

Novel selective mTORC1 inhibitors

Read More  

EffectiveTG (2018)

Effective Methods in Tame Geometry and Applications in Arithmetic and Dynamics

Read More  

DOUBLE-TROUBLE (2020)

Replaying the ‘genome duplication’ tape of life: the importance of polyploidy for adaptation in a changing environment

Read More