Opendata, web and dolomites

MycoVAP SIGNED

Bacterial chassis for treating ventilator-associated pneumonia (VAP)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MycoVAP" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO CENTRE DE REGULACIO GENOMICA 

Organization address
address: CARRER DOCTOR AIGUADER 88
city: BARCELONA
postcode: 8003
website: www.crg.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 149˙625 €
 EC max contribution 149˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO CENTRE DE REGULACIO GENOMICA ES (BARCELONA) coordinator 149˙625.00

Map

 Project objective

Among 65-80% of human infections are associated to biofilms, especially in respiratory infections or those associated with catheters. Endotracheal tube (ETT) biofilm is related to the development of ventilator-associated pneumonia (VAP), which occurs in 9–27% of all intubated patients. Those ETT-biofilms are mainly formed by Pseudomonas aeruginosa and/or Staphylococcus aureus, forming a protective barrier against antibiotics and the host immune system. The consequence of VAP is chronic inflammation resulting in slow but continuous decrease of lung function, which is the primary cause of mortality of patients at hospital wards, and is also associated with increased hospital morbidity; duration of hospitalization and consequently health care costs. Engineering bacteria to deliver locally therapeutic agents or to present antigens for vaccination is an emerging area of research with great clinical potential. Up to date, an attenuated BCG strain, used for prostate cancer vaccination, is the only example of a living bacteria used for human therapy. However, there are several studies worldwide at preclinical stage addressing the use of engineered bacteria for human therapy. We suggest here to test a non-pathogenic chassis of the mild human lung pathogen Mycoplasma pneumoniae, engineered to dissolve biofilms of S. aureus and P. aeruginosa for the treatment of VAP. The specific objectives of this proposal are: First, to confirm the safety of our bacterial chassis in the lung of animal models (mice and pigs). Second, to test the capacity of our engineered chassis to eliminate bacterial biofilms formed in endotracheal tubes and in mice models of biofilm formation. Success in both objectives will open the way to test our chassis in pig models of VAP as a first step towards its application in humans.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MYCOVAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MYCOVAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PoreDetect (2020)

Bench-top system for detection and analysis of miRNA using solid-state nanopores

Read More  

EnTER (2020)

Enhanced Mass Transport in Electrochemical Systems for Renewable Fuels and Clean Water

Read More  

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More