Opendata, web and dolomites

ArtHep SIGNED

Hepatocytes-Like Microreactors for Liver Tissue Engineering

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ArtHep project word cloud

Explore the words cloud of the ArtHep project. It provides you a very rough idea of what is the project "ArtHep" about.

live    microreactors    pressure    biocatalytic    mechanical    counteract    hepatic    obtain    medical    mimicking    surface    cues    bioprinted    perform    fatty    damage    matured    demand    liver    epidemics    changing    foundation    transplanted    rats    assembly    consolidating    encapsulation    synthetic    criteria    camouflaging    am    ex    ground    match    disease    connection    obesity    cell    subunits    transplant    reduce    damaged    global    causing    entities    opportunity    transplants    cells    matching    career    scientific    convinced    coating    regeneration    game    donor    functions    core    purposes    carriers    science    mimics    micro    insufficient    enzyme    biological    biomimicry    grow    arthep    breaking    destined    mimic    angled    dimensions    environment    shortage    conversions    structure    abundancy    progress    unexplored    tissue    slowing    alcoholic    moving    vivo    efforts    excellence    engineering    connect    active    anticipated    consisting    lobules    diabetes    organs    entirely   

Project "ArtHep" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 1˙992˙289 €
 EC max contribution 1˙992˙289 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 1˙992˙289.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.

ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.

Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.

I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARTHEP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARTHEP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Diverge (2019)

Generation of ultra-deep libraries of transcriptional activators for gene therapy

Read More  

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

inSight (2019)

Moving a novel gene therapy paradigm to treat blindness to the market

Read More