Opendata, web and dolomites

OptoTransport SIGNED

Light-enabled transport phenomena in van der Waals heterostructures

Total Cost €


EC-Contrib. €






Project "OptoTransport" data sheet

The following table provides information about the project.


Organization address
address: Raemistrasse 101
postcode: 8092

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Van der Waals heterostructures consisting of atomically thin materials, such as graphene and Transition metal dichalcogenides (TMD), have generated a tremendous amount of excitement in physics over the past decade. Embedding these systems in optical cavities leads to new hybrid excitations, known as exciton-polaritons, which govern the properties of the light-matter system. In this action, we aim to harness the unique properties of monolayer materials to explore exotic many-body phenomena that emerge due to the complex interplay of optical and electronic excitations. First, we plan to develop a new prototyping platform to rapidly and deterministically prepare high-quality van der Waals heterostructures, which will allow us to investigate a wider range of parameters than ever before. Our broad physics goal is to understand how electron transport is influenced by the presence of exciton-polaritons in different scenarios. In the first set of experiments, we will investigate polaron physics in a Bose-Fermi mixture formed by electrons and polaritons in a single TMD monolayer from a transport perspective. This will subsequently pave the way to exploring novel approaches to enhance interactions between electrons using exciton-polaritons as a mediator. A potentially ground-breaking consequence of our work will be the light-induced modification of transport properties of the system and in particular the enhancement of the critical temperature for superconductivity. The proposed research will therefore have a significant impact on our understanding of transport phenomena.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTOTRANSPORT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTOTRANSPORT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More