Opendata, web and dolomites

CF-CO2R SIGNED

Catholyte-free flow cell enables high efficiency electroreduction of CO2 to C2 fuels

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CF-CO2R" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-15   to  2021-06-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 191˙149.00

Map

 Project objective

In the light of rising levels of atmospheric CO2 and associated climate change, the development of advanced techniques for CO2 conversion is of foremost importance. Particularly, many efforts have been made recently to synthesize efficient electrocatalysts for CO2 reduction to carbon fuels using renewable electricity. Nevertheless, to meet the requirement of industrial implementation, even the best performance of these recently developed electrocatalysts must be increased by one order of magnitude. Currently, energy efficiency of CO2 electroreduction is limited by energy-loss in catholyte and transport of CO2 to the cathode surface. The importance of transport limitations will grow as currents approach the higher levels required for industry. The vision for this work is the design of an efficient catholyte-free electrode structure and reactor, in combination with state-of-the-art photovoltaic, that can provide for the industry-ready artificial photosynthesis of carbon fuels. To achieve this goal, we will be dedicated to develop a membrane electrode assembly cell with the design of a catholyte-free flow-through-porous electrode which will allow the incorporation of newly types of nanostructured electrocatalysts and efficient CO2 transfer and conversion into specific carbon fuels such as ethylene or ethanol. Particularly, the proposed research aims include: (i) Development of efficient electrocatalysts that allow the formation of ideal products (ethylene/ethanol); (ii) Enhancement of electrocatalytic activity and stability via system engineering; (iii) Understanding the fundamentals of CO2 electroreduction and cell mechanics to accelerate the development of catholyte-free flow-through-porous electrode for the design of a scalable, high-performance CO2 electroconversion cell through both experiments and theoretical modeling; (iv) Achieving the scalable solar fuels production with CO2 reduction and photovoltaic in tandem.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CF-CO2R" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CF-CO2R" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

PHOTOCARBOX (2020)

Increasing the scope of CO2-utilising photoreactions: asymmetric photosynthesis of amino acids

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More