Opendata, web and dolomites

MetD-AO SIGNED

Methyl Donating artificial organelles to support liver cells in Non-alcoholic fatty liver disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MetD-AO project word cloud

Explore the words cloud of the MetD-AO project. It provides you a very rough idea of what is the project "MetD-AO" about.

trained    carrier    poly    artificial    expertise    vitro    metd    entirely    reactors    release    cell    ao    amphiphilic    prior    homeostasis    medical    gaining    assemble    nonalcoholic    mimicking    few    hydrophilic    organelles    encompassing    functional    perform    oxygen    multiple    cargo    complementary    deficiencies    career    dr    sized    polymer    stadler    preserving    host    self    fatty    prospects    successful    enzyme    biology    nanoparticles    latter    compartment    intact    cellular    hepatocytes    pharmaceutical    conduction    adenosylmethionine    assembly    methyl    me    substitute    copolymers    consisting    missing    structurally    spectrum    employing    started    outcome    lost    biosynthesis    damage    cytosol    cholesterol    destroyed    tail    chronic    synthetase    acrylate    donating    nafld    organic    function    intracellular    biocatalytic    reactive    escape    lysosome    failing    respectively    colloidal    disease    encapsulated    world    protein    liver    synth    lysosomal    aos    membranolytic    characterization    science    reaction    carboxypentyl    therapeutic    single    methacrylate    reported    western    nano    chemist   

Project "MetD-AO" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 219˙312.00

Map

 Project objective

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, encompassing a spectrum of liver damage. Multiple issues are involved on the cellular level in failing liver often including enzyme deficiencies such as reduced biosynthesis of S-adenosylmethionine (SAMe). Preserving SAMe homeostasis has only recently started to be considered as a potential therapeutic target in liver-related medical conditions. However, employing the required enzyme, SAMe synthetase (SAMe-synth), as a pharmaceutical, is challenging due to the general issues involved in intact (functional) protein delivery. The aim of the MetD-AO project is to assemble organic SAMe-synth activity mimicking polymer nanoparticles as artificial organelles (AO) and their in vitro characterization of intracellular function in hepatocytes. AOs are typically nano-sized single compartment reactors, aimed to perform a specific encapsulated biocatalytic reaction within a cell to substitute for missing or lost function. The AO will be based on amphiphilic copolymers consisting of a methyl-donating unit, cholesterol methacrylate and poly(5-carboxypentyl acrylate) as membranolytic hydrophilic tail. The latter two will aim at facilitating self-assembly and lysosomal escape, respectively. To allow structurally intact AO to escape the lysosome is unique since typically, the carrier is destroyed and only the therapeutic cargo is release into the cytosol. The proposed AOs with methyl-donating ability are highly advanced because the few prior reported AOs with intracellular activity all considered reactive oxygen related aspects at best. The successful outcome of MetD-AO has the potential to open up entirely new therapeutic opportunities in NAFLD. The complementary expertise of my host Dr. Stadler and me, a trained polymer chemist, will ensure a successful conduction of MetD-AO while it will enhance my future career prospects gaining experience in colloidal science and cell biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METD-AO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METD-AO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More