Opendata, web and dolomites

MetD-AO SIGNED

Methyl Donating artificial organelles to support liver cells in Non-alcoholic fatty liver disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MetD-AO project word cloud

Explore the words cloud of the MetD-AO project. It provides you a very rough idea of what is the project "MetD-AO" about.

amphiphilic    gaining    intact    encapsulated    chronic    destroyed    poly    vitro    dr    hepatocytes    missing    synth    cytosol    damage    artificial    reaction    preserving    successful    mimicking    reactors    oxygen    few    failing    sized    encompassing    substitute    complementary    characterization    compartment    pharmaceutical    enzyme    assembly    aos    respectively    biocatalytic    single    medical    world    biology    trained    carrier    cargo    functional    acrylate    protein    deficiencies    release    stadler    self    biosynthesis    ao    cholesterol    started    science    intracellular    nanoparticles    nafld    assemble    methyl    methacrylate    donating    chemist    organelles    perform    spectrum    lysosomal    fatty    career    synthetase    escape    cellular    copolymers    consisting    me    adenosylmethionine    host    expertise    structurally    employing    metd    nano    reported    conduction    outcome    tail    prior    polymer    prospects    cell    homeostasis    entirely    membranolytic    multiple    latter    organic    carboxypentyl    function    colloidal    disease    lost    reactive    nonalcoholic    western    therapeutic    liver    lysosome    hydrophilic   

Project "MetD-AO" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 219˙312.00

Map

 Project objective

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, encompassing a spectrum of liver damage. Multiple issues are involved on the cellular level in failing liver often including enzyme deficiencies such as reduced biosynthesis of S-adenosylmethionine (SAMe). Preserving SAMe homeostasis has only recently started to be considered as a potential therapeutic target in liver-related medical conditions. However, employing the required enzyme, SAMe synthetase (SAMe-synth), as a pharmaceutical, is challenging due to the general issues involved in intact (functional) protein delivery. The aim of the MetD-AO project is to assemble organic SAMe-synth activity mimicking polymer nanoparticles as artificial organelles (AO) and their in vitro characterization of intracellular function in hepatocytes. AOs are typically nano-sized single compartment reactors, aimed to perform a specific encapsulated biocatalytic reaction within a cell to substitute for missing or lost function. The AO will be based on amphiphilic copolymers consisting of a methyl-donating unit, cholesterol methacrylate and poly(5-carboxypentyl acrylate) as membranolytic hydrophilic tail. The latter two will aim at facilitating self-assembly and lysosomal escape, respectively. To allow structurally intact AO to escape the lysosome is unique since typically, the carrier is destroyed and only the therapeutic cargo is release into the cytosol. The proposed AOs with methyl-donating ability are highly advanced because the few prior reported AOs with intracellular activity all considered reactive oxygen related aspects at best. The successful outcome of MetD-AO has the potential to open up entirely new therapeutic opportunities in NAFLD. The complementary expertise of my host Dr. Stadler and me, a trained polymer chemist, will ensure a successful conduction of MetD-AO while it will enhance my future career prospects gaining experience in colloidal science and cell biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METD-AO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METD-AO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

The Damned (2020)

Algeria, antifascism, and Third Worldism: An anticolonial genealogy of the Western European New Left (Algeria, France, Italy, 1957-1975)

Read More  

INFORM (2020)

Innovative Electrochemical Multiplex Biosensor for Detection and Quantification of Clinically Relevant Circulating miRNAs

Read More  

TRIAGE (2019)

TRophic state Interactions with drivers of Aquatic greenhouse Gas Emissions

Read More