Opendata, web and dolomites

MetD-AO SIGNED

Methyl Donating artificial organelles to support liver cells in Non-alcoholic fatty liver disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MetD-AO project word cloud

Explore the words cloud of the MetD-AO project. It provides you a very rough idea of what is the project "MetD-AO" about.

career    deficiencies    latter    prospects    intracellular    conduction    amphiphilic    damage    colloidal    gaining    consisting    homeostasis    trained    single    escape    release    chemist    encompassing    nafld    methyl    preserving    donating    nanoparticles    synthetase    western    reactors    failing    entirely    encapsulated    lysosome    organic    liver    cell    poly    lysosomal    assembly    complementary    world    employing    pharmaceutical    cargo    cholesterol    dr    biocatalytic    sized    fatty    membranolytic    methacrylate    reported    therapeutic    biology    self    tail    enzyme    spectrum    chronic    successful    polymer    substitute    prior    vitro    multiple    missing    synth    intact    hydrophilic    assemble    mimicking    nonalcoholic    respectively    protein    carrier    compartment    function    copolymers    perform    started    reaction    ao    reactive    organelles    adenosylmethionine    functional    cytosol    biosynthesis    acrylate    me    artificial    characterization    nano    hepatocytes    science    aos    outcome    carboxypentyl    lost    stadler    expertise    disease    destroyed    metd    cellular    oxygen    few    structurally    host    medical   

Project "MetD-AO" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 219˙312.00

Map

 Project objective

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, encompassing a spectrum of liver damage. Multiple issues are involved on the cellular level in failing liver often including enzyme deficiencies such as reduced biosynthesis of S-adenosylmethionine (SAMe). Preserving SAMe homeostasis has only recently started to be considered as a potential therapeutic target in liver-related medical conditions. However, employing the required enzyme, SAMe synthetase (SAMe-synth), as a pharmaceutical, is challenging due to the general issues involved in intact (functional) protein delivery. The aim of the MetD-AO project is to assemble organic SAMe-synth activity mimicking polymer nanoparticles as artificial organelles (AO) and their in vitro characterization of intracellular function in hepatocytes. AOs are typically nano-sized single compartment reactors, aimed to perform a specific encapsulated biocatalytic reaction within a cell to substitute for missing or lost function. The AO will be based on amphiphilic copolymers consisting of a methyl-donating unit, cholesterol methacrylate and poly(5-carboxypentyl acrylate) as membranolytic hydrophilic tail. The latter two will aim at facilitating self-assembly and lysosomal escape, respectively. To allow structurally intact AO to escape the lysosome is unique since typically, the carrier is destroyed and only the therapeutic cargo is release into the cytosol. The proposed AOs with methyl-donating ability are highly advanced because the few prior reported AOs with intracellular activity all considered reactive oxygen related aspects at best. The successful outcome of MetD-AO has the potential to open up entirely new therapeutic opportunities in NAFLD. The complementary expertise of my host Dr. Stadler and me, a trained polymer chemist, will ensure a successful conduction of MetD-AO while it will enhance my future career prospects gaining experience in colloidal science and cell biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METD-AO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METD-AO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PreSpeech (2018)

Predicting speech: what and when does the brain predict during language comprehension?

Read More  

PocketLight (2020)

Compact all-fibre nonlinear resonators as technological platform for a new generation of miniaturised light sources.

Read More  

AMPLE (2019)

A Study of the Notion of Ampleness in Model Theory and Tits Buildings

Read More