Opendata, web and dolomites

PEGASOS SIGNED

Photon Emitting Gated Arrays for Scalable On-chip quantum Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PEGASOS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 150˙000.00

Map

 Project objective

Single photons play in important part in the development of quantum technologies, particularly in the fields of communication and networks. There are many potential candidates of single-photon sources with varying degrees of quality and efficiency, and there is a collective push towards catapulting solid-state quantum light sources into real applications needed for the development of quantum technologies. To that end, the current ERC Consolidator Grant (from which this PoC proposal draws highly) focuses on semiconductor spin-photon interfaces and aims to develop them where milestones such as distant spin qubit entanglement can be demonstrated. While the majority of the deliverables have been reached, the key challenge of scalability still causes concern for conventional III-V-based semiconductor quantum dots. Conventional semiconductor quantum dots individually have stellar optical properties, but their random occurrence and their requirement to be embedded deep inside the host semiconductor makes it difficult to devise large-scale on-chip quantum devices with integrated photonic circuitry beyond a few quantum dots. During the ERC Consolidator Grant we have invented a completely new way to create quantum dots in other, less conventional semiconductors: atomically thin 2d materials. With this technique we are able to create very large quantum dot arrays with unprecedented location accuracy and comfortably in the thousands and have demonstrated all-electrical triggering of single photons. The invention is patented and there is a very recent spin-off company aiming to commercialise this system for high-yield large-band with quantum light sources. The immediate application areas are space QKD and quantum random number generation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PEGASOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PEGASOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DistMaP (2019)

Distributed and Massively Parallel Graph Algorithms

Read More  

SLAM4AR (2019)

Simultaneous Localization and Mapping for Augmented Reality

Read More  

SUBMODULAR (2019)

The Power of Randomness and Continuity in Submodular Optimization

Read More