Opendata, web and dolomites

Synthetic T-rEX SIGNED

A synthetic biology approach for T cell exhaustion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Synthetic T-rEX project word cloud

Explore the words cloud of the Synthetic T-rEX project. It provides you a very rough idea of what is the project "Synthetic T-rEX" about.

immunotherapy    revolutionised    cells    normal    immunotherapies    car    localised    tuning    fine    immune    circuits    therapies    genetically    intervention    medical    cd8    rewire    break    scientific    dysfunction    strategies    synthetic    activation    checkpoint    industrial    performed    patients    concerted    blockade    reprogram    self    modulators    limited    chronic    antigen    signals    cell    solid    epigenetic    rex    inputs    play    sequencing    exposure    regulated    encoded    ex    actuator    compute    provides    shift    hampered    treatments    minimise    action    clinical    engineer    exhaustion    exhibit    biology    utr    physiology    tumor    promoters    microrna    vivo    bioengineered    paradigm    enhanced    therapeutic    trigger    profile    broadly    receptors    natural    contained    shown    occurring    sensor    therapy    notably    revert    human    function    rna    exhausted    programmed    remarkable    genetic    restore    intracellular    output    stepwise    engineering    benefits    summary    unleash    adverse    rely    integration   

Project "Synthetic T-rEX" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙496˙250 €
 EC max contribution 1˙496˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 1˙496˙250.00

Map

 Project objective

Synthetic Biology has revolutionised approaches for several scientific, industrial and medical applications. These include the development of immunotherapies based on bioengineered cells, most notably engineering of patients T cells with tumor-targeting receptors, the CAR-T cells. Cell-based immunotherapies have shown remarkable clinical success; yet, long-term benefits are hampered by dysfunction of T cells occurring following antigen chronic exposure, a process known as T cell exhaustion. Current treatments of T cell exhaustion are limited and exhibit adverse effects. Synthetic T-rEX aims to reprogram exhausted T-cells using synthetic biology circuits, to implement enhanced and more effective immune cell-based therapies. We will develop specific, self-contained genetic circuits with improved capabilities that minimise the impact on normal cell physiology; by pre-programmed integration of exhaustion-specific intracellular signals, these will rewire T cell activity and restore normal function. Circuits will be developed using a stepwise, bottom-up approach to identify exhaustion-specific inputs by RNA and microRNA-sequencing profile performed on ex vivo exhausted human CD8 T cells. We will then design (a) synthetic promoters and (b) microRNA-regulated 5’UTR that will compute information processing to trigger output activation. Localised therapy will rely on concerted action of genetically encoded immune-checkpoint blockade and fine-tuning of epigenetic modulators that play a major role in T cell exhaustion. Finally, we will engineer T cells with sensor-actuator synthetic devices that revert exhaustion (T-rEX cells). In summary, our proposal provides a paradigm shift in the development of strategies against T cell exhaustion and a solid break-through towards enhanced natural and cell-based immunotherapy. More broadly, the proposed approach will unleash the potential of synthetic biology to the next level of therapeutic intervention.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNTHETIC T-REX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNTHETIC T-REX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More