Opendata, web and dolomites

FraMoS TERMINATED

Multi-resolution Fracture Models for High-strength Steels: Fully Ductile Fracture to Quasi-cleavage Failure in Hydrogen Environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FraMoS project word cloud

Explore the words cloud of the FraMoS project. It provides you a very rough idea of what is the project "FraMoS" about.

bottlenecks    micromechanical    3d    heterogeneities    damage    length    coalescence    exascale    tip    dislocations    microcracks    diffusion    describing    initiation    assisted    lieu    fracture    nucleation    destructive    structure    predictive    alloys    cycle    microstructure    deficiencies    employing    computational    he    oxford    macroscopic    quasi    course    describe    cover    eliminating    propagation    durable    cleavage    tougher    accelerate    incorporate    accounting    crack    fidelity    virtual    spectrum    models    linkage    ductile    relations    twip    recent    computing    mechanisms    environment    mechanism    embrittlement    predictions    complete    continuum    expensive    mechanics    trip    initiated    recognition    interactions    microstructural    quest    hss    particles    fundamental    era    limitations    international    tomographic    entire    tools    cracking    least    void    hampered    scales    unraveling    influence    devastating    realistic    pursuit    contribution    stronger    hydrogen    lack    toughness    trapping    materials   

Project "FraMoS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.hems.ox.ac.uk
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-12-01   to  2018-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 195˙454.00

Map

 Project objective

Recent advances in Computational Mechanics are towards the development of predictive tools that can accelerate the 'Materials Development Cycle' by unraveling the linkage between macroscopic properties and microstructure. The availability of 3D tomographic tools and the era of Exascale computing have initiated the quest to develop stronger, tougher and more durable alloys by employing 'virtual predictions' in lieu of expensive destructive testing. However, our lack of understanding of the 'structure-toughness’ relations is one of the main bottlenecks in this pursuit. Moreover, the uptake of some of these new alloys (TRIP, TWIP etc) is hampered by the concerns of hydrogen (H) induced cracking. Existing models have limitations in describing the role of microstructural heterogeneities on mechanisms of fracture in HSS. The proposed research will develop high fidelity continuum models to cover the entire spectrum of mechanisms from fully ductile fracture to quasi-cleavage failure of HSS in H-environment. Among the various mechanisms of H-assisted cracking, hydrogen embrittlement (HE) is one of the most devastating, yet least understood, mechanism of failure in HSS. In this work, realistic models of void nucleation accounting for the dislocations interactions with the second phase particles will be developed. The proposed models of void growth and coalescence will incorporate the microstructural length scales, thus, eliminating the deficiencies of the existing 'damage models'. The micromechanical models of HE developed in this work will incorporate the influence of hydrogen on the initiation and propagation of microcracks leading to complete failure. These models will be integrated with the most advanced models of H-diffusion and trapping (being developed at Oxford) to describe the detailed mechanism of fracture at crack tip in HSS. It is expected that this work will bring, in due course, significant international recognition for its fundamental and applied contribution

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRAMOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRAMOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More