Opendata, web and dolomites

MitoScaling SIGNED

Mitotic scaling to cell size diversity during vertebrate embryonic development

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MitoScaling" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE GENEVE 

Organization address
address: RUE DU GENERAL DUFOUR 24
city: GENEVE
postcode: 1211
website: www.unige.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 187˙419 €
 EC max contribution 187˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 187˙419.00

Map

 Project objective

Cell division is a common process to all cell types in a multicellular organism. During mitosis, equal chromosome segregation in anaphase is regulated by an Aurora B phosphorylation gradient, centered at the midplane between the two chromosome sets. The gradient gives positional information that allows nuclear envelope reformation (NER) only when chromosomes are far enough from the kinase activity. Considering the 120μm human zygote and a 15μm fibroblast, how can the gradient scale with cell size over such wide range of sizes? To unravel the scaling mechanism, I will measure the biophysical parameters of this phosphorylation gradient using a FRET sensor and optogenetics to manipulate the gradient with fast spatiotemporal kinetics. I will address three key questions: i) Does the gradient sense cell size? ii) If so, how is size information used to scale the gradient? iii) How is gradient scaling translated into NER positioning? I will focus on three zebrafish cell systems with extreme sizes and dynamics: 1) embryonic cleavage divisions, where cell size halves with every cell division; 2) EVL cells, which are stretched quickly into flatter cell sizes, implying fast scaling dynamics; 3) asymmetric division in neuronal precursor cells, where the two sides of the spindle midzone must scale differently to generate daughters of different sizes. With this approach, I will generate unprecedented information on the regulation of anaphase chromosome separation in its natural context. This entry point in anaphase will provide a conceptual frame and a tool kit to address a more general problem: how do other mitotic machineries scale with cell size? A wider question for my long-term future research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MITOSCALING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MITOSCALING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More  

ShaRe (2019)

The potential of Sharing Resources for mitigating carbon emissions and other environmental impacts

Read More  

Comedy and Politics (2018)

The Comedy of Political Philosophy. Democratic Citizenship, Political Judgment, and Ideals in Political Practice.

Read More