Opendata, web and dolomites

VASCFLAP

A new reconstructing technique using tissue engineering methods to create an engineered autologous vascularized tissue flap

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VASCFLAP project word cloud

Explore the words cloud of the VASCFLAP project. It provides you a very rough idea of what is the project "VASCFLAP" about.

flap    vessels    site    plan    minimal    cells    network    moved    scaffold    supply    consequence    burns    tissue    feasibility    biomaterial    patients    contain    animal    autologous    improves    treatment    full    injured    vascularized    complete    risks    breast    reduces    describe    implantation    involve    market    later    surgical    human    construct    name    intact    implanted    reconstructive    isolated    harvesting    donor    surgery    free    once    transplant    seeded    blood    thickness    disadvantages    performed    cultured    possibility    quality    complicated    scarification    transfer    scant    alternative    skin    trauma    defect    polymeric    alone    life    vitro    abdominal    severe    portfolio    axial    morbidity    niche    postoperative    lifted    property    overcome    patient    repair    thousands    idea    technique    reconstruction    uses    wall    engineered    adjacent    establishing    model    muscle    cancer    defects    skinsubcutisfasciamuscle    intellectual   

Project "VASCFLAP" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 147˙500 €
 EC max contribution 147˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2016-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 147˙500.00

Map

 Project objective

'Abdominal wall defects are often the consequence of severe trauma, cancer treatment and burns. These defects involve a significant loss of tissue, and often require surgical reconstruction where tissue is lifted from the patient's donor site and moved to his injured site with an intact blood supply (autologous muscle free flap). The current transfer surgery is complicated and involved with donor-site morbidity after tissue harvesting, and scant availability. We propose a robust engineered transplant performed by a novel reconstruction technique to overcome these disadvantages. The proposed transplant uses an alternative biomaterial implantation, offering the possibility to repair a full-thickness defect of the abdominal wall without the need to transfer tissue (skinsubcutisfasciamuscle) from another site and minimal postoperative scarification (skin only). We name this technique 'an Engineered Autologous Vascularized Axial Flap'. The key idea of this approach is the use of a polymeric scaffold upon which human cells will be seeded. The engineered tissue cultured in vitro will contain also a network of blood vessels. Then, this engineered construct will be implanted around large blood vessels adjacent to the injured site. Once highly vascularized, it will be possible to transfer the implanted engineered vascularized construct as a flap for covering the defects. Once developed, this autologous cost-effective engineered tissue product may be used in reconstructive surgery of the abdominal wall and breast (thousands of cases in the EU alone) which improves the patients’ quality of life and reduces surgical costs and risks. Here we describe a plan to develop this product by identifying the most cost-effective niche where we can go to market in. We plan to complete a set of feasibility studies in large animal model using human cells (which could later be isolated from the patient = autologous cells) and proceed establishing our portfolio of intellectual property.'

 Publications

year authors and title journal last update
List of publications.
2016 Alina Freiman, Yulia Shandalov, Dekel Rozenfeld, Erez Shor, Sofia Segal, Dror Ben-David, Shai Meretzki, Dana Egozi, Shulamit Levenberg
Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro
published pages: , ISSN: 1757-6512, DOI: 10.1186/s13287-015-0251-6
Stem Cell Research & Therapy 7/1 2019-07-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VASCFLAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VASCFLAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

PLANTGROWTH (2019)

Exploiting genome replication to design improved plant growth strategies

Read More  

MiniEmbryoBlueprint (2019)

The mammalian body plan blueprint, an in vitro approach

Read More