Opendata, web and dolomites


Hierarchical surface patterns from dissolution-reaction-crystallisation mediated evaporation controlled self-assembly (DRC-ECA) and its antimicrobial coating application

Total Cost €


EC-Contrib. €






 DRC-ECSA project word cloud

Explore the words cloud of the DRC-ECSA project. It provides you a very rough idea of what is the project "DRC-ECSA" about.

corroborating    nanostructural    longer    temperature    hua    binary    confined    ect    zno    microbiology    polymers    sophisticated    size    self    dissolution    skills    particles    explored    wu    ring    humidity    hierarchical    drying    drc    nanofluid    characterization    interdisciplinary    ee    transferrable    droplet    synthesis    beneficial    plans    assembled    mechanism    complexity    surface    morphologies    mediated    intricately    crystal    rate    residual    patterns    mixtures    co    crystallisation    structures    observations    efficacy    understand    comprehensively    independent    unprecedented    dr    acquired    scientific    physical    concentration    nanoparticle    threefold    tuneable    volume    substrate    surfactants    enriching    evaporative    career    details    leader    nucleation    solvent    evaporation    surfaces    equilibrium    structural    particle    surprising    acquire    nanostructured    antimicrobial    assembly    engaging    broad    obtain    ecsa    previously    extend    morphological    chemistry    erent    geometry    shape    reaction    coatings    multidisciplinary    preliminary    hw    architecture    di   

Project "DRC-ECSA" data sheet

The following table provides information about the project.


Organization address
postcode: BS8 1QU

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-04   to  2017-09-03


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 195˙454.00


 Project objective

A preliminary study by the applicant (Dr. Hua Wu (HW)) has proposed a novel dissolution-reaction-crystallisation mediated evaporation controlled self-assembly (DRC-ECSA) mechanism, from surprising and unprecedented observations of complex residual surface patterns with hierarchical architecture self-assembled upon evaporative drying of a ZnO nanofluid droplet. This mechanism is very different from that previously established for the coffee ring effect and other ECSA processes, and the morphological and nanostructural details of the obtained surface patterns also depend intricately on – thus are tuneable by – a range of physical parameters. Much of the complexity due to these corroborating factors remains to be fully explored. The aim of the project is threefold: 1) to fully understand the DRC-ECSA mechanism by comprehensively investigating the effects of physical parameters such as the solvent mixtures, evaporation rate, ZnO nanofluid concentration, shape and size of ZnO particles, addition of surfactants and polymers, substrate chemistry, droplet volume, temperature and humidity; 2) to apply and extend the DRC-ECSA mechanism (e.g. in a confined geometry and using binary particle mixtures) to obtain sophisticated surface patterns with tailored morphologies and hierarchical structures; 3) to evaluate the efficacy of the surface patterns for potential applications in antimicrobial coatings. By leading and engaging in the proposed project, Dr. HW will acquire new skills and knowledge in a range of interdisciplinary and multidisciplinary scientific and technical areas, including non-equilibrium ECSA, nucleation and crystal growth, morphological and structural characterization, nanoparticle synthesis, and microbiology of nanostructured surfaces. A broad range of transferrable skills acquired through the enriching experience of this interdisciplinary project will be very beneficial to Dr. HW’s longer term career plans to become an independent research leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DRC-ECSA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DRC-ECSA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More