Opendata, web and dolomites

ACPNMR

Structural dynamics of acyl carrier protein complexes through combined solution and solid-state NMR

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ACPNMR project word cloud

Explore the words cloud of the ACPNMR project. It provides you a very rough idea of what is the project "ACPNMR" about.

ks12    arsenal    synthase    nature    chemical    inactive    successful    modern    crisis    picture    multidrug    ing    manipulation    molecular    resistance    biosynthesis    natural    adapter    polyketide    structure    biosythesized    structural    specificity    isolated    multienzymatic    synthetic    good    12    responsible    size    toolbox    genetic    shown    vital    directionality    mycobacterium    pks    microorganisms    motions    antibiotics    producing    industrial    direct    combining    compounds    dynamic    paving    acps    neglecting    relaxation    modular    tuberculosis    probe    solution    modifying    assembly    solid    gladiolin    special    inspired    acp12b    difficult    ketosynthase    orders    module    gladiolinum    dynamical    lines    pkss    becomes    dynamics    magnitude    complexes    synthesize    infected    biology    acp12a    bacterium    understand    world    population    carrier    ideal    interactions    proteins    acyl    obtain    active    mulitenzyme    drugs    dysfunctional    nmr    protein    resistant    medicine   

Project "ACPNMR" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.facebook.com/drpotocki.msc
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-10   to  2017-09-09

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 183˙454.00

Map

 Project objective

'Antibiotics are a vital part of modern medicine. However, the available arsenal of antibiotics becomes less effective as microorganisms develop 'resistance' against them. The resulting crisis in medicine necessitates development of new drugs. Natural products inspired compounds are a potential solution to this challenge. For example, gladiolin biosythesized by a mulitenzyme polyketide synthase (PKS) was shown to be active against Mycobacterium tuberculosis, a multidrug resistant bacterium that one third of world’s population is infected with. The PKS producing gladiolinum is a good example of multienzymatic assembly lines that due to their modular nature are ideal for genetic manipulation paving the way for synthetic biology approach to produce new drugs (that are difficult to synthesize using chemical methods). However, for such approach to be successful it is crucial to understand molecular level structural and dynamical factors responsible for controlling directionality and specificity of biosynthesis. Neglecting such factors, when modifying PKSs often results in assembly lines that are inactive or dysfunctional. Here we propose to use a novel approach combining state-of-the-art solution and solid-state NMR methods to investigate structure, dynamics and interactions of proteins from module 12 of gladiolin PKS, particularly acyl carrier proteins (ACP12a and ACP12b) and special adapter ketosynthase (KS12), all of them highly required in industrial biosynthesis toolbox. We will use solution NMR to characterize isolated ACPs and solid-state NMR to study ACPs-KS12 complexes (direct structural information is difficult to obtain by solution NMR due to the large complex size). Combining solution and solid-state NMR relaxation methods will allow us to probe protein motions over 6 orders of magnitude providing a comprehensive picture of relevant dynamic changes in ACPs-KS12 complexes.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACPNMR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACPNMR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More