Opendata, web and dolomites

ACPNMR

Structural dynamics of acyl carrier protein complexes through combined solution and solid-state NMR

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ACPNMR project word cloud

Explore the words cloud of the ACPNMR project. It provides you a very rough idea of what is the project "ACPNMR" about.

synthetic    microorganisms    industrial    picture    combining    lines    chemical    adapter    drugs    carrier    obtain    directionality    ks12    ing    acp12a    resistance    isolated    mulitenzyme    tuberculosis    pks    becomes    multienzymatic    modifying    crisis    interactions    natural    producing    protein    genetic    manipulation    nmr    modern    magnitude    vital    neglecting    shown    multidrug    molecular    dysfunctional    responsible    gladiolinum    pkss    successful    infected    orders    understand    dynamics    size    gladiolin    paving    antibiotics    biosynthesis    arsenal    12    modular    acps    dynamical    difficult    special    structural    dynamic    ketosynthase    resistant    synthase    active    solution    proteins    structure    biology    relaxation    good    motions    solid    mycobacterium    acp12b    synthesize    complexes    inspired    direct    biosythesized    inactive    toolbox    population    specificity    probe    compounds    bacterium    medicine    world    nature    ideal    assembly    module    acyl    polyketide   

Project "ACPNMR" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.facebook.com/drpotocki.msc
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-10   to  2017-09-09

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 183˙454.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

'Antibiotics are a vital part of modern medicine. However, the available arsenal of antibiotics becomes less effective as microorganisms develop 'resistance' against them. The resulting crisis in medicine necessitates development of new drugs. Natural products inspired compounds are a potential solution to this challenge. For example, gladiolin biosythesized by a mulitenzyme polyketide synthase (PKS) was shown to be active against Mycobacterium tuberculosis, a multidrug resistant bacterium that one third of world’s population is infected with. The PKS producing gladiolinum is a good example of multienzymatic assembly lines that due to their modular nature are ideal for genetic manipulation paving the way for synthetic biology approach to produce new drugs (that are difficult to synthesize using chemical methods). However, for such approach to be successful it is crucial to understand molecular level structural and dynamical factors responsible for controlling directionality and specificity of biosynthesis. Neglecting such factors, when modifying PKSs often results in assembly lines that are inactive or dysfunctional. Here we propose to use a novel approach combining state-of-the-art solution and solid-state NMR methods to investigate structure, dynamics and interactions of proteins from module 12 of gladiolin PKS, particularly acyl carrier proteins (ACP12a and ACP12b) and special adapter ketosynthase (KS12), all of them highly required in industrial biosynthesis toolbox. We will use solution NMR to characterize isolated ACPs and solid-state NMR to study ACPs-KS12 complexes (direct structural information is difficult to obtain by solution NMR due to the large complex size). Combining solution and solid-state NMR relaxation methods will allow us to probe protein motions over 6 orders of magnitude providing a comprehensive picture of relevant dynamic changes in ACPs-KS12 complexes.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACPNMR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACPNMR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

NarrowbandSSL (2019)

Development of Narrow Band Blue and Red Emitting Macromolecules for Solution-Processed Solid State Lighting Devices

Read More