Opendata, web and dolomites

KREDs in GSBs

Directed evolution of ketoreductases in gel-shell beads

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KREDs in GSBs project word cloud

Explore the words cloud of the KREDs in GSBs project. It provides you a very rough idea of what is the project "KREDs in GSBs" about.

glaxosmithkline    screening    enzyme    2020    nature    alcohol    trials    selective    reaction    bed    directed    individual    industry    endeavour    always    assays    ketoreductases    forefront    matching    public    gel    campaigns    secondary    meet    detection    biocatalysis    reactor    cytometry    previously    pure    affords    broadening    corresponding    precise    final    throughput    beads    professional    derivatives    manufacture    courses    macromolecular    small    solution    2014    series    size    nad    opening    enantioselectivity    substrate    shell    surrounded    evolution    molecules    scaled    791    solvent    training    green    intensive    contact    sensitive    career    readily    ketones    ketoreductase    excellent    12    limiting    transfer    aid    gsk    pharmaceutical    alcohols    secondment    agarose    efficient    flow    performed    concentrations    maintained    retained    laboratory    members    horizon    kreds    cofactor    university    beneficiary    enzymes    host    optically    library    continuous    cambridge    skill    tolerance    ideal    communicated    engagements    exchanged    industrial    chemistry    group   

Project "KREDs in GSBs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bioc.cam.ac.uk/hollfelder/members/laurens
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Optically pure secondary alcohols are required in the manufacture of many pharmaceutical products. Ketoreductases (KREDs) capable of reduction of ketones to the corresponding secondary alcohol have been improved through classical directed evolution campaigns but a limiting factor has always been the challenge of matching selection conditions to the final scaled-up reaction. Here we propose a solution to that problem. The Host group previously described the formation of gel-shell beads, agarose beads surrounded by a size-selective shell (Nature Chemistry 2014, 6:791). The beads allow screening of individual members of an enzyme library using flow cytometry. As small molecules can be readily exchanged, while enzymes are retained, the process not only affords precise control over selection conditions but also makes it ideal for continuous flow processes. To support this endeavour, sensitive assays for the high throughput detection of ketoreductase activity and enantioselectivity will be developed. Directed evolution will then be performed with selection for the efficient use of macromolecular derivatives of the NAD(P)H cofactor and improved tolerance to high substrate /solvent concentrations. Throughout the project, intensive contact will be maintained with Industrial Partner GlaxoSmithKline, leading up to flow bed reactor trials during a secondment. This project will provide the Beneficiary with an excellent training in biocatalysis, broadening his skill set and opening up new career opportunities in Europe’s growing Green Chemistry Sector. The Host laboratory is at the forefront of directed evolution of enzymes. Through the secondment at GSK, the Beneficiary will be able to transfer this technology to industry. Excellent training courses offered by the University of Cambridge will further aid his professional development. This project seeks to help Europe meet Part 12 of Horizon 2020, which is to be communicated through a well-planned series of Public Engagements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KREDS IN GSBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KREDS IN GSBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More