Opendata, web and dolomites

KREDs in GSBs

Directed evolution of ketoreductases in gel-shell beads

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KREDs in GSBs project word cloud

Explore the words cloud of the KREDs in GSBs project. It provides you a very rough idea of what is the project "KREDs in GSBs" about.

university    gel    selective    opening    surrounded    throughput    sensitive    matching    enzyme    2020    precise    engagements    scaled    beads    derivatives    affords    cofactor    individual    communicated    nature    always    continuous    trials    corresponding    public    skill    shell    limiting    secondary    enantioselectivity    career    nad    agarose    industry    solvent    assays    laboratory    2014    screening    substrate    biocatalysis    meet    pharmaceutical    concentrations    optically    detection    endeavour    forefront    ketoreductase    previously    intensive    transfer    broadening    molecules    library    beneficiary    readily    small    maintained    training    solution    pure    exchanged    retained    ketoreductases    industrial    reaction    chemistry    cytometry    series    kreds    secondment    cambridge    manufacture    directed    campaigns    alcohol    macromolecular    contact    gsk    reactor    professional    host    791    tolerance    size    12    excellent    group    members    enzymes    horizon    courses    flow    glaxosmithkline    ketones    efficient    ideal    bed    evolution    final    alcohols    performed    green    aid   

Project "KREDs in GSBs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bioc.cam.ac.uk/hollfelder/members/laurens
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Optically pure secondary alcohols are required in the manufacture of many pharmaceutical products. Ketoreductases (KREDs) capable of reduction of ketones to the corresponding secondary alcohol have been improved through classical directed evolution campaigns but a limiting factor has always been the challenge of matching selection conditions to the final scaled-up reaction. Here we propose a solution to that problem. The Host group previously described the formation of gel-shell beads, agarose beads surrounded by a size-selective shell (Nature Chemistry 2014, 6:791). The beads allow screening of individual members of an enzyme library using flow cytometry. As small molecules can be readily exchanged, while enzymes are retained, the process not only affords precise control over selection conditions but also makes it ideal for continuous flow processes. To support this endeavour, sensitive assays for the high throughput detection of ketoreductase activity and enantioselectivity will be developed. Directed evolution will then be performed with selection for the efficient use of macromolecular derivatives of the NAD(P)H cofactor and improved tolerance to high substrate /solvent concentrations. Throughout the project, intensive contact will be maintained with Industrial Partner GlaxoSmithKline, leading up to flow bed reactor trials during a secondment. This project will provide the Beneficiary with an excellent training in biocatalysis, broadening his skill set and opening up new career opportunities in Europe’s growing Green Chemistry Sector. The Host laboratory is at the forefront of directed evolution of enzymes. Through the secondment at GSK, the Beneficiary will be able to transfer this technology to industry. Excellent training courses offered by the University of Cambridge will further aid his professional development. This project seeks to help Europe meet Part 12 of Horizon 2020, which is to be communicated through a well-planned series of Public Engagements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KREDS IN GSBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KREDS IN GSBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

TIPTOP (2019)

Tensoring Positive Maps on Operator Structures

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More