Opendata, web and dolomites

WALKEr

Robot-induced Error Augmentation for improving pre-gait and gait rehabilitation in stroke survivors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "WALKEr" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS 

Organization address
address: Robert-Koch-Strasse 40
city: GOETTINGEN
postcode: 37075
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2017-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS DE (GOETTINGEN) coordinator 159˙460.00

Map

 Project objective

Robotic assisted gait training (RAGT) for stroke rehabilitation is promising but it has not met the expectations of the clinical community yet. Several studies have demonstrated the effectiveness of this approach, but, as now, RAGT has not been demonstrated to be superior to standard gait training. The research community is thus focusing on developing novel training methodologies for RAGT in order to fully exploit its potential. Emphasis has been given to training methodologies that promote and maximize the active participation of the patients. The Error Augmentation (EA) paradigm has been successfully developed and proved effective for the upper limbs. In the EA paradigm, perturbations are used to amplify the movement error of the patient in a way that induces a compensatory motor plan that rejects the augmented error. This approach has been applied to the lower limbs by means of split-belt treadmill training, where the speeds of the belt are set in order to amplify gait asymmetries and promote an adaptation toward a less asymmetric gait pattern. However, EA has not been applied in RAGT. Its implementation in RAGT can extend the target of this therapy to several other gait parameters. In WALKEr we plan to develop the EA paradigm on both a robotic ankle device and a six degrees of freedom (DoFs) exoskeleton for gait rehabilitation. Both developments will then be tested on healthy subjects and chronic stroke survivors to assess the potential of this technique in improving motor adaptations, motor learning and rehabilitation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WALKER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WALKER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

E-CLIPS (2019)

Effects of Cross-Linguistic Interactions on Perception of Speech

Read More  

POSPORI (2019)

Polymer Optical Sensors for Prolonged Overseeing the Robustness of civil Infrastructures

Read More