Opendata, web and dolomites

HELICOMBX

Quantum spin Hall insulator with two dimensional crystals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HELICOMBX project word cloud

Explore the words cloud of the HELICOMBX project. It provides you a very rough idea of what is the project "HELICOMBX" about.

induce    exist    explore    difficult    parts    insulators    measured    fabricate    orbit    revealed    facilitates    crystals    functionalized    prepare    dissipationless    reduce    hall    transition    preserved    inducing    edge    unifying    electronics    paradigm    josephson    nondissipative    scattering    energy    society    nevertheless    materials    atomically    few    deposition    helicombx    majorana    adatoms    signature    dichalcogenides    physics    condensed    metal    construction    interaction    integrate    discovered    mechanical    conductance    back    quantum    heterostructures    advancements    divided    final    transport    spin    quantized    observe    thin    right    establishing    magnetotransport    demonstrated    theoretical    endeavor    channels    graphene    junctions    consumption    nanoelectronics    symmetry    first    reversal    scientific    ballistic    attract    topological    time    dimensional    surface    kinds    limits    electrical    exfoliation    basis    spintronics    fermions   

Project "HELICOMBX" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 173˙076.00

Map

 Project objective

Dissipationless electrical transport is a key paradigm to reduce energy consumption in our society. Recent advancements in condensed matter physics have revealed that there exist ballistic transport channels at the surface or the edge of topological insulators. These states are preserved by time-reversal symmetry and robust against back scattering. Exploiting topological insulators is therefore a major step for future nondissipative nanoelectronics. Nevertheless, such a topological phase of matter has been discovered in very few kinds of materials so far. Most of the existing materials are difficult to fabricate, which limits scientific endeavor to explore their properties and also future application. Recently, several theoretical studies have demonstrated that atomically thin graphene or other two dimensional crystals may become two dimensional topological insulators (quantum spin Hall insulators) by inducing large spin-orbit interaction. These materials are rich of novel physics and attract growing attention in their own right. Moreover, they are easy to prepare by mechanical exfoliation, which facilitates to apply them to real nanoelectronics devices. HELICOMBX is the first project which aims at establishing a basis for dissipationless electronics and spintronics with graphene and transition metal dichalcogenides and unifying physics in topological phase, spintronics and two dimensional crystals. The project is divided into three parts. First we will induce large spin-orbit interaction in graphene by adatoms deposition and heterostructures construction with transition metal dichalcogenides. Spin-orbit interaction of each system is then measured by magnetotransport measurements. Second we will exploit these functionalized two dimensional crystals for spintronics devices. As the final part, quantized conductance will be measured as a signature of the edge states, and we will integrate it into Josephson junctions to observe the Majorana fermions.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HELICOMBX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HELICOMBX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

INSPiRE (2018)

The Influence of Information Search on Preference Formation and Choice

Read More  

LIGHTMATT-EXPLORER (2019)

Experimental determination of the paraxial-vectorial limit of light-matter interactions

Read More