Opendata, web and dolomites


The Physical Mechanics of Swimming Bacteria

Total Cost €


EC-Contrib. €






 PhyMeBa project word cloud

Explore the words cloud of the PhyMeBa project. It provides you a very rough idea of what is the project "PhyMeBa" about.

surrounding    appendages    nonlocal    models    proximity    modeling    quantitatively    flagellar    outstanding    interactions    steric    fluid    turn    biology    fundamental    nonlinear    possess    slender    environment    derive    departure    exploring    simplify    life    analytically    predictive    critical    deriving    organisms    cell    pathogenic    multiple    underlying    flagellum    one    incorporate    mechanical    regimes    electrostatic    undergo    motors    constrained    hydrodynamic    questions    configurations    bend    answer    testable    bacteria    elastic    relative    habitat    physics    flagella    nature    framework    question    fluids    slenderness    rigorous    survive    rotated    precisely    advantage    foremost    twist    conformational    physical    stochastic    theoretical    specialized    external    behavior    deformations    forces    stresses    swim    fitness    first    understand    lies    motile    cells    experimentally    swimming    seek    principal    difficulty    play    helical   

Project "PhyMeBa" data sheet

The following table provides information about the project.


Organization address
postcode: CB2 1TN

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 1˙999˙229 €
 EC max contribution 1˙999˙229 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-CoG
 Funding Scheme ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Bacteria play a critical role in the life of higher organisms. Their behavior is constrained by the physical properties of their habitat: first and foremost, the presence of a surrounding fluid. Most bacteria are motile, and most motile bacteria swim in fluids using slender helical appendages called flagella rotated by specialized motors. While many bacteria have only one flagellum, most well-studied pathogenic bacteria possess multiple flagella. Why have some bacteria evolved to use many flagella when others survive with one? In order to answer this question, one needs to understand quantitatively how multiple flagella provide a fitness advantage to a cell exploring its environment. The principal difficulty in deriving rigorous models for swimming bacteria lies in the {nonlinear} nature of the underlying external physics, which involves nonlocal hydrodynamic interactions between flagella, short-range steric and electrostatic interactions, and elastic deformations of the flagella, which not only bend and twist but also undergo conformational changes. In this project, we will develop novel experimentally-testable theoretical modeling of the configurations and regimes relevant to swimming bacteria with multiple flagella with a focus on the mechanical forces at play. As a fundamental departure with past work, we will seek to exploit the slenderness and relative proximity of the flagella to incorporate all nonlocal hydrodynamic interactions between flagella analytically and to simplify the determination of elastic stresses. This will allow us, in turn, to determine precisely the distribution of flagellar forces and derive a predictive framework for the stochastic behavior of swimming cells. The project will provide first-principle understanding of the external forces at play in one of the most important processes in biology and will help answer a number of outstanding physical questions on the behavior of swimming bacteria and the interactions with their environment.


year authors and title journal last update
List of publications.
2019 Haoran Xu, Justas Dauparas, Debasish Das, Eric Lauga, Yilin Wu
Self-organization of swimmers drives long-range fluid transport in bacterial colonies
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-09818-2
Nature Communications 10/1 2020-01-22
2019 Debasish Das, Eric Lauga
Active Particles Powered by Quincke Rotation in a Bulk Fluid
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.194503
Physical Review Letters 122/19 2020-01-22
2019 Panayiota Katsamba, Eric Lauga
Propulsion by stiff elastic filaments in viscous fluids
published pages: , ISSN: 2470-0045, DOI: 10.1103/physreve.99.053107
Physical Review E 99/5 2020-01-22
2019 Kenta Ishimoto, Eric Lauga
The N -flagella problem: elastohydrodynamic motility transition of multi-flagellated bacteria
published pages: 20180690, ISSN: 1364-5021, DOI: 10.1098/rspa.2018.0690
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475/2225 2020-01-22
2019 Boan Zhao, Eric Lauga, Lyndon Koens
Method of regularized stokeslets: Flow analysis and improvement of convergence
published pages: , ISSN: 2469-990X, DOI: 10.1103/physrevfluids.4.084104
Physical Review Fluids 4/8 2020-01-22
2019 Maciej Lisicki, Marcos F Velho Rodrigues, Raymond E Goldstein, Eric Lauga
Swimming eukaryotic microorganisms exhibit a universal speed distribution
published pages: , ISSN: 2050-084X, DOI: 10.7554/elife.44907
eLife 8 2020-01-22
2019 Christian Esparza López, Albane Théry, Eric Lauga
A stochastic model for bacteria-driven micro-swimmers
published pages: 2605-2616, ISSN: 1744-683X, DOI: 10.1039/c8sm02157k
Soft Matter 15/12 2020-01-22
2018 Justas Dauparas, Debasish Das, Eric Lauga
Helical micropumps near surfaces
published pages: 14108, ISSN: 1932-1058, DOI: 10.1063/1.5012070
Biomicrofluidics 12/1 2020-01-22
2017 Alexander Chamolly, Takuji Ishikawa, Eric Lauga
Active particles in periodic lattices
published pages: 115001, ISSN: 1367-2630, DOI: 10.1088/1367-2630/aa8d5e
New Journal of Physics 19/11 2020-01-22
2018 Lyndon Koens, Hang Zhang, Martin Moeller, Ahmed Mourran, Eric Lauga
The swimming of a deforming helix
published pages: , ISSN: 1292-8941, DOI: 10.1140/epje/i2018-11728-2
The European Physical Journal E 41/10 2020-01-22
2018 Debasish Das, Eric Lauga
Computing the motor torque of Escherichia coli
published pages: 5955-5967, ISSN: 1744-683X, DOI: 10.1039/c8sm00536b
Soft Matter 14/29 2020-01-22
2018 Maciej Lisicki, Shang Yik Reigh, Eric Lauga
Autophoretic motion in three dimensions
published pages: 3304-3314, ISSN: 1744-683X, DOI: 10.1039/c8sm00194d
Soft Matter 14/17 2020-01-22
2019 H.-W. Huang, F. E. Uslu, P. Katsamba, E. Lauga, M. S. Sakar, B. J. Nelson
Adaptive locomotion of artificial microswimmers
published pages: eaau1532, ISSN: 2375-2548, DOI: 10.1126/sciadv.aau1532
Science Advances 5/1 2020-01-22
2019 Panayiota Katsamba, Eric Lauga
Hydrodynamics of bacteriophage migration along bacterial flagella
published pages: , ISSN: 2469-990X, DOI: 10.1103/physrevfluids.4.013101
Physical Review Fluids 4/1 2020-01-22
2018 Lyndon Koens, Eric Lauga
The boundary integral formulation of Stokes flows includes slender-body theory
published pages: , ISSN: 0022-1120, DOI: 10.1017/jfm.2018.483
Journal of Fluid Mechanics 850 2020-01-22
2018 Maria Tătulea-Codrean, Eric Lauga
Artificial chemotaxis of phoretic swimmers: instantaneous and long-time behaviour
published pages: 921-957, ISSN: 0022-1120, DOI: 10.1017/jfm.2018.718
Journal of Fluid Mechanics 856 2020-01-22
2018 Emily E. Riley, Debasish Das, Eric Lauga
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-28319-8
Scientific Reports 8/1 2020-01-22
2018 Justas Dauparas, Eric Lauga
Leading-order Stokes flows near a corner
published pages: 590-633, ISSN: 0272-4960, DOI: 10.1093/imamat/hxy014
IMA Journal of Applied Mathematics 83/4 2020-01-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHYMEBA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHYMEBA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EvolPhysiol (2019)

Evolution of Physiology: The link between Earth and Life

Read More  

TALE (2019)

Therapeutic Allele Engineering: A novel technology for cell therapy

Read More  

PoreDetect (2020)

Bench-top system for detection and analysis of miRNA using solid-state nanopores

Read More