Opendata, web and dolomites

FUNC NGS

Deep screening of proteins with a next generation sequencing platform

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FUNC NGS project word cloud

Explore the words cloud of the FUNC NGS project. It provides you a very rough idea of what is the project "FUNC NGS" about.

sequencing    generalizable    variant    bind    laboratory    altered    units    sequences    sequencer    intensively    tool    functional    clusters    showcase    func    creation    mature    combined    oligonucleotide    parallel    homing    hybridization    created    function    dna    technique    modifying    transformative    facilities    pairs    links    medimmune    hosts    hollfelder    indispensable    ivc    paired    describes    molecular    protein    first    secondment    termed    excellent    bioinformatics    cell    radically    situ    bacterial    screening    medicine    engineering    expertise    perfect    massively    free    personalized    opening    group    acute    drug    illumina    ngs    limited    discovery    techniques    deep    contain    display    subsequently    monoclonal    dr    modified    sequence    snap    combines    stage    manner    adhesin    readily    possibilities    generation    genomics    compatible    cambridge    next    synthetic    synergistically    science    university    specificity    demanding    solving    spytag    biology    desired    platform    flow    vitro    spycatcher    complementary    therapeutic   

Project "FUNC NGS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.bioc.cam.ac.uk/hollfelder
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-08-01   to  2017-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Next generation sequencing (NGS) has become an indispensable tool for system biology and has recently been adopted in protein engineering science as well. This proposal describes the development of a highly generalizable technique, termed FUNC-NGS, which links in situ functional information of protein activity with the function-determining DNA sequence in a massively parallel manner opening exciting possibilities, e.g., in drug discovery. In this method a cell-free display platform is combined with NGS by modifying protein display units to contain unique homing oligonucleotide sequences. These units are subsequently targeted to bind monoclonal DNA clusters in the flow cell of an Illumina sequencer by complementary DNA hybridization. FUNC-NGS is readily compatible with a paired-end sequencing programme on the Illumina platform and the number of screening units is only limited by the number of DNA clusters on the flow cell. As the first application challenge, a new variant of a modified bacterial adhesin, Spycatcher, will be created with an altered specificity for synthetic biology applications. Novel Spycatcher-SpyTag pairs are intensively desired but their creation is demanding. Solving this problem will be a perfect showcase for this radically novel deep screening technology. At the mature stage FUNC-NGS will be a transformative platform in therapeutic protein development, functional genomics and personalized medicine. The proposed work will be carried out at Dr. Hollfelder´s laboratory at the University of Cambridge with a short secondment at Medimmune. Hollfelder group has developed SNAP display, which is a FUNC-NGS-compatible in vitro protein display system. Furthermore, the University hosts excellent facilities for NGS sequencing and experienced bioinformatics support is available. The planned research programme synergistically combines my expertise in molecular biology method development with the hosts expertise in cell-free display and IVC-techniques.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUNC NGS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUNC NGS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More  

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More  

Mel.Photo.Protect (2019)

Unraveling the Photoprotecting Mechanism of Melanin - From a Library of Fragments to Simulation of Spectra and Function

Read More