Opendata, web and dolomites

ProFF SIGNED

Programming in vitro evolution using molecular fitness functions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProFF project word cloud

Explore the words cloud of the ProFF project. It provides you a very rough idea of what is the project "ProFF" about.

catalytic    tools    generation    directed    natural    autonomously    catalysts    evolution    genetic    molecular   

Project "ProFF" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙141˙379 €
 EC max contribution 2˙141˙379 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme /ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 2˙141˙379.00

Mappa

 Project objective

Natural enzymes are awesome catalysts, in terms of their catalytic efficiency, selectivity, control mechanisms, etc. Revamped as laboratory or industrial tools, they have allowed more than a few breakthroughs, such as PCR, next generation sequencing or green chemistry. The next revolution will be brought by a new generation of extensively modified “enzymatic” catalysts working in non-natural environments, possibly build from non-natural chemistries and targeting an unlimited range of non-natural functions. However, their design is still an arduous process; computational design lacks precision while the combinatorial approach, directed evolution, is limited by labor-intensive or ad hoc selection stages.

We will remove the selection bottleneck in directed evolution by introducing biochemical computers able to perform this step autonomously. Based on recent developments in DNA-based molecular programming, these molecular scouts will be co-compartmentalized with genetic libraries into billions of individual compartments in micrometric emulsions. At each generation and in each droplet, after expression of the genotype, these molecular programs will autonomously: i- evaluate the phenotypic signature of a candidate, ii- integrate this information into a predefined scoring function and iii- propagate the relevant genetic information according to this score.

The programmability of this approach will make directed evolution versatile, faster, and able to address more challenging problems. The evolution dynamics itself become tunable, offering new perspectives on the fitness landscape of biopolymer catalysts. A quantitative in silico model will be built and integrated in a computer-assisted tool for the fast set-up of in vitro experiments and tuning of the various experimental knobs. Overall, we will close a virtuous circle by evolving the molecular tools enabling the programmable selection of the next generation of catalytic tools.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROFF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROFF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PARSe (2018)

Program Analysis and Reorganization, as a Service

Read More  

LEAP-EXTREME (2018)

Local Edaphic Adaptation in Plants through Leveraging an Extremophile Model

Read More  

ACCOPT (2018)

ACelerated COnvex OPTimization

Read More