Opendata, web and dolomites


NEUral computing aRchitectures in Advanced Monolithic 3D-VLSI nano-technologies

Total Cost €


EC-Contrib. €






 NeuRAM3 project word cloud

Explore the words cloud of the NeuRAM3 project. It provides you a very rough idea of what is the project "NeuRAM3" about.

coprocessing    complementary    signal    solutions    realise    digital    nano    multiple    architecture    realising    objects    energy    massively    machine    fabricated    validate    modules    throughput    things    line    structures    conventional    interconnect    fabricate    constraints    servers    computational    learning    physical    configurable    array    spectrum    autonomous    fundamental    chips    toolbox    computing    performance    planar    spike    power    algorithms    internet    jointly    data    demonstrations    full    efficient    neumann    architectures    rules    volatile    validating    networks    platform    delivering    programming    silicon    synaptic    3d    implementing    depleted    processor    50x    monolithic    neural    respect    technologies    rram    gain    chip    mechanisms    von    first    native    ultra    parallel    complete    fdsoi    supports    insulator    instantiating    neuromorphic    classes    electronic    online    synapses    scalable    consumption    structure    vision    28nm    adaptive    mobile    basic   

Project "NeuRAM3" data sheet

The following table provides information about the project.


Organization address
address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website
 Total cost 4˙181˙015 €
 EC max contribution 3˙216˙150 € (77%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
 Code Call H2020-ICT-2015
 Funding Scheme RIA
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2019-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
3    STMICROELECTRONICS SA FR (MONTROUGE) participant 426˙000.00
5    JACOBS UNIVERSITY BREMEN GGMBH DE (BREMEN) participant 303˙687.00
7    STICHTING IMEC NEDERLAND NL (EINDHOVEN) participant 155˙000.00
8    IBM RESEARCH GMBH CH (RUESCHLIKON) participant 0.00
9    UNIVERSITAT ZURICH CH (ZURICH) participant 0.00


 Project objective

We propose to fabricate a chip implementing a neuromorphic architecture that supports state-of-the-art machine learning algorithms and spike-based learning mechanisms. With respect to its physical architecture this chip will feature an ultra low power, scalable and highly configurable neural architecture that will deliver a gain of a factor 50x in power consumption on selected applications compared to conventional digital solutions; and fabricated in Fully- Depleted Silicon on Insulator (FDSOI) at 28nm design rules. In parallel the project will be validating the modules to realise RRAM synapses both planar and in a 3D monolithic structure. We will complete this vision and develop complementary technologies that will allow to address the full spectrum of applications from mobile/autonomous objects to high performance computing coprocessing, by realising (1) a technology to implement on-chip learning, using native adaptive characteristics of electronic synaptic elements; and (2) a scalable platform to interconnect multiple neuromorphic processor chips to build large neural processing systems. The neuromorphic computing system will be developed jointly with advanced neural algorithms and computational architectures for online adaptation, learning, and high-throughput on-line signal processing, delivering 1. an ultra-low power massively parallel non von Neumann computing platform with non-volatile nano-scale devices that support on-line learning mechanisms 2. a programming toolbox of algorithms and data structures tailored to the specific constraints and opportunities of the physical architecture; 3. an array of fundamental application demonstrations instantiating the basic classes of signal processing tasks. The neural chip will validate the concept and be a first step to develop a European technology platform addressing from ultra-low power data processing in autonomous systems (Internet of Things) to energy efficient large data processing in servers and networks.


List of deliverables.
Physical Level and Computational Level benchmarking. Documents, reports 2020-01-28 10:21:32
Toolbox of algorithms and computational architecture building blocks. Other 2020-01-28 10:21:32
Joint publication on hardware compatible recurrent neural network architecture. Documents, reports 2020-01-28 10:21:32
Report on spike-based learning circuits suitable for RRAM technologies. Documents, reports 2020-01-28 10:21:31
Design ready for tape-out of the FDSOI 28nm multi-core spiking neural network chip. Other 2020-01-28 10:21:31
Project web-site on line with public and restricted areas Other 2020-01-28 10:21:31
Report on the characteristics of TFT’s as interconnects for a Global Synapse Chips Documents, reports 2020-01-28 10:21:31
Report on digital spike-based computing circuits suitable for RRAM technologies Documents, reports 2020-01-28 10:21:31
Process description for the integration of RRAM technology in 28nm FDSOI BEOL, as input for WP 3 Documents, reports 2020-01-28 10:21:31
Electrical characterization of 1T-1R RRAM cell as input for compact modeling for WP 2 Documents, reports 2020-01-28 10:21:31

Take a look to the deliverables list in detail:  detailed list of NeuRAM3 deliverables.


year authors and title journal last update
List of publications.
2018 Adarsha Balaji, Federico Corradi, Anup Das, Sandeep Pande, Siebren Schaafsma, Francky Catthoor
Power-Accuracy Trade-Offs for Heartbeat Classification on Neural Networks Hardware
published pages: 508-519, ISSN: 1546-1998, DOI: 10.1166/jolpe.2018.1582
Journal of Low Power Electronics 14/4 2020-01-28
2017 Ning Qiao, Chiara Bartolozzi, Giacomo Indiveri
An Ultralow Leakage Synaptic Scaling Homeostatic Plasticity Circuit With Configurable Time Scales up to 100 ks
published pages: 1271-1277, ISSN: 1932-4545, DOI: 10.1109/tbcas.2017.2754383
IEEE Transactions on Biomedical Circuits and Systems 11/6 2020-01-28
2018 Saber Moradi, Ning Qiao, Fabio Stefanini, Giacomo Indiveri
A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)
published pages: 106-122, ISSN: 1932-4545, DOI: 10.1109/TBCAS.2017.2759700
IEEE Transactions on Biomedical Circuits and Systems 12/1 2020-01-28
2018 Raphaela Kreiser, Dora Aathmani, Ning Qiao, Giacomo Indiveri, Yulia Sandamirskaya
Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields
published pages: , ISSN: 1662-453X, DOI: 10.3389/fnins.2018.00717
Frontiers in Neuroscience 12 2020-01-28
2017 Manu V Nair, Lorenz K Muller, Giacomo Indiveri
A differential memristive synapse circuit for on-line learning in neuromorphic computing systems
published pages: 35003, ISSN: 2399-1984, DOI: 10.1088/2399-1984/aa954a
Nano Futures 1/3 2020-01-28
2019 F. Hadaeghi
Neuromorphic Electronic Systems for Reservoir Computing
published pages: , ISSN: , DOI:
Reservoir Computing: Theory, Physical Implementations and Applications 2020-01-28
2018 X. He, H. Jaeger
Overcoming Catastrophic Interference using Conceptor-Aided Backpropagation
published pages: , ISSN: , DOI:
Proc. International Conference on Learning Representations 2018 (ICLR 2018) 2020-01-28
2019 S Brivio, D Conti, M V Nair, J Frascaroli, E Covi, C Ricciardi, G Indiveri, S Spiga
Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics
published pages: 15102, ISSN: 0957-4484, DOI: 10.1088/1361-6528/aae81c
Nanotechnology 30/1 2020-01-28
2017 Francky Catthoor, Srinjoy Mitra, Anup Das and Siebren Schaafsma
Very Large Scale Neuromorphic Systems For Biological Signal Processing
published pages: , ISSN: , DOI:
CMOS Circuits for Biological Sensing and Processing Systems 2020-01-28
2017 Prathyusha Adiraju
Exploration of general purpose interface for spiking-based application simulator
published pages: , ISSN: , DOI:
2017 S. Brivio, S. Spiga
Stochastic circuit breaker network model for bipolar resistance switching memories
published pages: 1-13, ISSN: 1569-8025, DOI: 10.1007/s10825-017-1055-y
Journal of Computational Electronics 2020-01-28
2017 C. Mohan, T. Serrano-Gotarredona, E. Vianello, L. Perniolla, C. Reita, J.M. de la Rosa, B. Linares-Barranco
On the Use of Offset Calibration Techniques for Low-Power Memristor Arrays Read-Out
published pages: , ISSN: , DOI:
International Conference on Memristive Materials, Devices & Systems (MEMRISYS 2017) biannual 2020-01-28
2018 Jacopo Frascaroli, Stefano Brivio, Erika Covi, Sabina Spiga
Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-25376-x
Scientific Reports 8/1 2020-01-28
2017 Hadaeghi, F. and He, X. and Jaeger, H.
Unconventional Information Processing Systems, Novel Hardware: A Tour d’Horizon
published pages: , ISSN: , DOI:
2017 Evangelos Stromatias, Miguel Soto, Teresa Serrano-Gotarredona, Bernabé Linares-Barranco
An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data
published pages: , ISSN: 1662-453X, DOI: 10.3389/fnins.2017.00350
Frontiers in Neuroscience 11 2020-01-28
2017 Yuefeng Wu
Exploration of segmented bus architecture for neuromorphic computing
published pages: , ISSN: , DOI:
2017 Stefano Brivio, Jacopo Frascaroli, Sabina Spiga
Role of Al doping in the filament disruption in HfO2 resistance switches
published pages: , ISSN: 0957-4484, DOI: 10.1088/1361-6528/aa8013
Nanotechnology 2020-01-28
2017 He, Xu and Jaeger, Herbert
Overcoming Catastrophic Interference by Con-ceptors
published pages: , ISSN: , DOI:
2018 E Covi, R George, J Frascaroli, S Brivio, C Mayr, H Mostafa, G Indiveri, S Spiga
Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons
published pages: 344003, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aad361
Journal of Physics D: Applied Physics 51/34 2020-01-28
2019 Fatemeh Hadaeghi, Herbert Jaeger
Computing optimal discrete readout weights in reservoir computing is NP-hard
published pages: 233-236, ISSN: 0925-2312, DOI: 10.1016/j.neucom.2019.02.009
Neurocomputing 338 2020-01-28
2019 S Brivio, D Conti, M V Nair, J Frascaroli, E Covi, C Ricciardi, G Indiveri, S Spiga
Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics
published pages: 15102, ISSN: 0957-4484, DOI: 10.1088/1361-6528/aae81c
Nanotechnology 30/1 2020-01-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEURAM3" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEURAM3" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.)

DIHNET.EU (2018)

Next Generation European DIH Network

Read More  


Customized photonic devices for defectless laser based manufacturing

Read More  

STARTUP3 (2020)

Supporting deep-tech based innovative market players to uptake opportunities, upgrade performance and upscale their business

Read More