Opendata, web and dolomites


Low-dimensional topology in Oxford

Total Cost €


EC-Contrib. €






 OXTOP project word cloud

Explore the words cloud of the OXTOP project. It provides you a very rough idea of what is the project "OXTOP" about.

geometric    relationship    21    surface    gnf    conjecture    ribbon    first    maps    contain    geometries    structures    tool    spaces    knot    dimensional    simplify    111    coefficients    khovanov    algebraic    tqfts    surfaces    tori    concavity    graph    ball    bound    understand       few    pi    admit    decide    sequence    alternating    structure    algebra    group    surgery    log    hf    obstruction    alexander    band    polynomial    manifolds    spectral    bounds    hence    theoretic    eacute    cobordism    geometrization    examples    gluing    unimodal    invariants    correction    algebras    question    attacking    poincar    consists    unknotting    arithmetic    techniques    thurston    biological    links    homology    representations    smooth    counterexample    mcg    classification    fox    huh    genus    branches    form    tqft    strategy    gauge    hfk    happens    brings    corresponds    description    seem    slice    lm    aacute    heegaard    absolute    experts    yield    bordered    floer   

Project "OXTOP" data sheet

The following table provides information about the project.


Organization address
city: OXFORD
postcode: OX1 2JD

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 1˙497˙422 €
 EC max contribution 1˙497˙422 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2021-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

This project aims to build a group that brings together experts in gauge-theoretic, geometric, and group-theoretic techniques. It consists of 4 branches.

1. Cobordism maps in knot Floer homology (HFK). Defined by the PI, these should yield invariants of surfaces in 4-manifolds. Hence, they could be used to bound the 4-ball genus and the unknotting number, providing a tool for finding a counterexample to the smooth 4-dimensional Poincaré conjecture, and to decide whether a given slice knot bounds a ribbon surface. The cobordism maps seem to yield a spectral sequence from Khovanov homology to HFK. An important biological application is an obstruction for two links to be related by a band surgery.

2. TQFTs. We use our classification of (21)-dimensional TQFTs in terms of GNF*-algebras and MCG representations to find new examples of such TQFTs. First, we simplify the algebraic structure, then determine when a GNF*-algebra corresponds to a (111)-dimensional TQFT. This would allow us to find a (21)-dimensional TQFT that is not (111)-dimensional.

3. Heegaard Floer (HF) homology and geometrization. There are currently few links known between Floer-theoretic invariants of 3-manifolds and the geometric structures they admit. We propose to study the Floer homology of arithmetic 3-manifolds. These are often L-spaces; the question is when this happens, and whether the HF correction terms contain any number-theoretic information. The next step is studying the relationship between HF and the Thurston geometries, and then gluing along tori via bordered Floer homology. An important step is to understand the behaviour of HF under covering maps.

4. The Fox conjecture. This states that the absolute values of the coefficients of the Alexander polynomial of an alternating knot form a unimodal sequence. We propose a strategy for attacking this conjecture via the graph-theoretic description of the Alexander polynomial due to Kálmán, and the test of log-concavity of Huh.


year authors and title journal last update
List of publications.
2018 András Juhász, Marco Marengon
Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT
published pages: 1315-1390, ISSN: 1022-1824, DOI: 10.1007/s00029-017-0368-9
Selecta Mathematica 24/2 2019-07-08
2018 András Juhász
Defining and classifying TQFTs via surgery
published pages: 229-321, ISSN: 1663-487X, DOI: 10.4171/qt/108
Quantum Topology 9/2 2019-07-08
2018 Andras Juhasz, Sungkyung Kang
Spectral order for contact manifolds with convex boundary
published pages: 3315-3338, ISSN: 1472-2747, DOI:
Algebraic and Geometric Topology 18/6 2019-04-14
2018 Daniele Celoria
On concordances in 3-manifolds
published pages: 180-200, ISSN: 1753-8416, DOI: 10.1112/topo.12051
Journal of Topology 11/1 2019-04-04
2018 Paolo Aceto, Marco Golla, Ana G. Lecuona
Handle decompositions of rational homology balls and Casson–Gordon invariants
published pages: 4059-4072, ISSN: 0002-9939, DOI: 10.1090/proc/14035
Proceedings of the American Mathematical Society 146/9 2019-04-09
2017 József Bodnár, Daniele Celoria, Marco Golla
A note on cobordisms of algebraic knots
published pages: 2543-2564, ISSN: 1472-2747, DOI: 10.2140/agt.2017.17.2543
Algebraic & Geometric Topology 17/4 2019-04-04

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OXTOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OXTOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

MEMO (2020)

The Memory of Solitons

Read More  

EAST (2020)

Using Evolutionary Algorithms to Understand and Secure Web/Enterprise Systems

Read More