Opendata, web and dolomites

PETMEM

Piezoelectronic Transduction Memory Device

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PETMEM" data sheet

The following table provides information about the project.

Coordinator
THE BIO NANO CENTRE LIMITED LBG 

Organization address
address: EUSTON ROAD 338
city: LONDON
postcode: NW1 3BT
website: www.bio-nano-consulting.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.petmem.eu
 Total cost 3˙998˙461 €
 EC max contribution 3˙340˙621 € (84%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
 Code Call H2020-ICT-2015
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-12-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE BIO NANO CENTRE LIMITED LBG UK (LONDON) coordinator 532˙808.00
2    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) participant 648˙060.00
3    DCA-INSTRUMENTS OY FI (TURKU) participant 397˙343.00
4    SOLMATES BV NL (ENSCHEDE) participant 374˙312.00
5    NPL MANAGEMENT LIMITED UK (MIDDLESEX) participant 348˙608.00
6    aixACCT Systems GmbH DE (AACHEN) participant 338˙250.00
7    STIFTELSEN SINTEF NO (TRONDHEIM) participant 326˙987.00
8    UNIVERSITEIT GENT BE (GENT) participant 206˙750.00
9    SINTEF AS NO (TRONDHEIM) participant 112˙500.00
10    ELECTROSCIENCES LTD UK (FARNHAM) participant 55˙000.00
11    EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT CH (DUBENDORF) participant 0.00
12    IBM RESEARCH GMBH CH (RUESCHLIKON) participant 0.00
13    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) participant 0.00

Map

 Project objective

Computer clock speeds have not increased since 2003, creating a challenge to invent a successor to CMOS technology able to resume performance improvement. The key requirements for a viable alternative are scalability to nanoscale dimensions – following Moore’s Law – and simultaneous reduction of line voltage in order to limit switching power. Achieving these two aims for both transistors and memory allows clock speed to again increase with dimensional scaling, a result that would have great impact across the IT industry. We propose to demonstrate an entirely new low-voltage, memory element that makes use of internal transduction in which a voltage state external to the device is converted to an internal acoustic signal that drives an insulator-metal transition. Modelling based on the properties of known materials at device dimensions on the 15 nm scale predicts that this mechanism enables device operation at voltages an order of magnitude lower than CMOS technology while achieving 10GHz operating speed; power is thus reduced two orders.

 Deliverables

List of deliverables.
Public web site of the project Websites, patent fillings, videos etc. 2020-01-29 12:41:24
Newsletter 1 Websites, patent fillings, videos etc. 2020-01-29 12:41:24
Newsletter 2 Websites, patent fillings, videos etc. 2020-01-29 12:41:24
Newsletter 3 Websites, patent fillings, videos etc. 2020-01-29 12:41:24
Newsletter 5 Websites, patent fillings, videos etc. 2020-01-29 12:41:24
Newsletter 4 Websites, patent fillings, videos etc. 2020-01-29 12:41:24

Take a look to the deliverables list in detail:  detailed list of PETMEM deliverables.

 Publications

year authors and title journal last update
List of publications.
2016 Xiaoliang Zhong, Ivan Rungger, Peter Zapol, Olle Heinonen
Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.94.165160
Physical Review B 94/16 2020-01-29
2017 P. G. Naumov, K. Filsinger, S. I. Shylin, O. I. Barkalov, V. Ksenofontov, Y. Qi, T. Palasyuk, W. Schnelle, S. A. Medvedev, M. Greenblatt, C. Felser
Pressure-induced magnetic collapse and metallization of TlF e 1.6 S e 2
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.96.064109
Physical Review B 96/6 2020-01-29
2016 Xiaoliang Zhong, Ivan Rungger, Peter Zapol, Hisao Nakamura, Yoshihiro Asai, Olle Heinonen
The effect of a Ta oxygen scavenger layer on HfO 2 -based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport
published pages: 7502-7510, ISSN: 1463-9076, DOI: 10.1039/C6CP00450D
Phys. Chem. Chem. Phys. 18/10 2020-01-29
2017 P. G. Naumov, K. Filsinger, O. I. Barkalov, G. H. Fecher, S. A. Medvedev, C. Felser
Pressure-induced transition to the collapsed tetragonal phase in BaC r 2 A s 2
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.95.144106
Physical Review B 95/14 2020-01-29
2017 Hisao Nakamura, Ivan Rungger, Stefano Sanvito, Nobuki Inoue, Junji Tominaga, Yoshihiro Asai
Resistive switching mechanism of GeTe–Sb 2 Te 3 interfacial phase change memory and topological properties of embedded two-dimensional states
published pages: 9386-9395, ISSN: 2040-3364, DOI: 10.1039/C7NR03495D
Nanoscale 9/27 2020-01-29
2017 Maria Stamenova, Razie Mohebbi, Jamileh Seyed-Yazdi, Ivan Rungger, Stefano Sanvito
First-principles spin-transfer torque in CuMnAs | GaP | CuMnAs junctions
published pages: 403, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.95.060403
Physical Review B 95/6 2020-01-29
2017 Xiaoliang Zhong, Ivan Rungger, Peter Zapol, Olle Heinonen
Ab initio modeling of transport and thermodynamic stability for hafnia memristive devices
published pages: 1066-1076, ISSN: 1569-8025, DOI: 10.1007/s10825-017-1043-2
Journal of Computational Electronics 16/4 2020-01-29
2018 Jacob B. J. Chapman, Oliver T. Gindele, Carlo Vecchini, Paul Thompson, Mark Stewart, Markys G. Cain, Dorothy M. Duffy, Anna V. Kimmel
Low temperature ferroelectric behavior in morphotropic Pb (Zr 1− x Ti x )O 3
published pages: 874-882, ISSN: 0002-7820, DOI: 10.1111/jace.15101
Journal of the American Ceramic Society 101/2 2020-01-29
2017 Moaz A. ElGhazali, Pavel G. Naumov, Hossein Mirhosseini, Vicky Süß, Lukas Müchler, Walter Schnelle, Claudia Felser, Sergey A. Medvedev
Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdS e 2
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.96.060509
Physical Review B 96/6 2020-01-29
2017 Andreas Sousanis, Philippe F. Smet, and Dirk Poelman
Samarium Monosulfide (SmS): Reviewing Properties and Applications
published pages: 953, ISSN: 1996-1944, DOI: 10.3390/ma10080953
Materials 10/8 2020-01-29
2017 Donata Passarello, Simone G. Altendorf, Jaewoo Jeong, Charles Rettner, Noel Arellano, Teya Topuria, Mahesh G. Samant, Stuart S. P. Parkin
Evidence for Ionic Liquid Gate-Induced Metallization of Vanadium Dioxide Bars over Micron Length Scales
published pages: 2796-2801, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.6b05029
Nano Letters 17/5 2020-01-29
2019 L. N. McCartney, L. E. Crocker, L. Wright
Verification of a 3D analytical model of multilayered piezoelectric systems using finite element analysis
published pages: 184503, ISSN: 0021-8979, DOI: 10.1063/1.5054070
Journal of Applied Physics 125/18 2020-01-29
2018 W. H. Appelt, A. Droghetti, L. Chioncel, M. M. Radonjić, E. Muñoz, S. Kirchner, D. Vollhardt, I. Rungger
Predicting the conductance of strongly correlated molecules: the Kondo effect in perchlorotriphenylmethyl/Au junctions
published pages: 17738-17750, ISSN: 2040-3364, DOI: 10.1039/c8nr03991g
Nanoscale 10/37 2020-01-29
2018 Michael A. Hope, Kent J. Griffith, Bin Cui, Fang Gao, Siân E. Dutton, Stuart S. P. Parkin, Clare P. Grey
The Role of Ionic Liquid Breakdown in the Electrochemical Metallization of VO 2 : An NMR Study of Gating Mechanisms and VO 2 Reduction
published pages: 16685-16696, ISSN: 0002-7863, DOI: 10.1021/jacs.8b09513
Journal of the American Chemical Society 140/48 2020-01-29
2018 Kai Chang, Thaneshwor P. Kaloni, Haicheng Lin, Amilcar Bedoya‐Pinto, Avanindra K. Pandeya, Ilya Kostanovskiy, Kun Zhao, Yong Zhong, Xiaopeng Hu, Qi‐Kun Xue, Xi Chen, Shuai‐Hua Ji, Salvador Barraza‐Lopez, Stuart S. P. Parkin
Enhanced Spontaneous Polarization in Ultrathin SnTe Films with Layered Antipolar Structure
published pages: 1804428, ISSN: 0935-9648, DOI: 10.1002/adma.201804428
Advanced Materials 31/3 2020-01-29
2018 Yanpeng Qi, Wujun Shi, Peter Werner, Pavel G. Naumov, Walter Schnelle, Lei Wang, Kumari Gaurav Rana, Stuart Parkin, Sergiy A. Medvedev, Binghai Yan, Claudia Felser
Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4
published pages: , ISSN: 2397-4648, DOI: 10.1038/s41535-018-0078-3
npj Quantum Materials 3/1 2020-01-29
2018 Worasak Rotjanapittayakul, Jariyanee Prasongkit, Ivan Rungger, Stefano Sanvito, Wanchai Pijitrojana, Thomas Archer
Search for alternative magnetic tunnel junctions based on all-Heusler stacks
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.054425
Physical Review B 98/5 2020-01-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PETMEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PETMEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.)

5G-DIVE (2019)

5G-DIVE: eDge Intelligence for Vertical Experimentation

Read More  

WASP (2019)

Wearable Applications enabled by electronic Systems on Paper

Read More  

INNODEC (2019)

Innovation Radar Data-based Identification & Commercialisation

Read More