Opendata, web and dolomites

SPENG SIGNED

Stretchable Piezoelectric Nanogenerators for Energy Harvesting in Elastic Environments

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SPENG project word cloud

Explore the words cloud of the SPENG project. It provides you a very rough idea of what is the project "SPENG" about.

multidisciplinary    efficiency    eh    piezoelectric    substrates    harvesters    electrode    scalability    fixed    stretchable    proper    healthcare    flexible    direct    conversion    satisfy    autonomous    small    supersede    flexibility    ubiquitous    pressing    attractive    rigid    departure    polymer    rarely    epidermal    electrical    scavenging    environments    route    materials    performance    nanogenerators    vibrations    energy    blood    implantable    elastic    nature    sources    revolutionize    biological    constant    generation    deformation    electrodes    convert    career    criteria    fabrication    replacing    scenarios    batteries    nanomaterials    action    patterned    offers    academic    ceramic    monitoring    wearable    stretchability    vital    coupled    ngs    lack    nanoscale    recharging    electronic    electronics    power    ng    environment    pz    university    cambridge    simulations    printing    marking    harvesting    hence    techniques    stiff    flow    broaden    brittle    body    enhancement    functional    micro    methodology    extreme    nano    movements    innovative   

Project "SPENG" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2018-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Nanoscale piezoelectric (PZ) energy harvesters, or nanogenerators (NGs), are vital for next-generation autonomous devices as they can directly convert small-scale vibrations, such as blood flow and body movements, into electrical energy. Scavenging power from ubiquitous vibrations in this way offers an attractive route to supersede fixed power sources such as batteries that need constant replacing/recharging. In particular, epidermal or implantable PZ NGs could revolutionize wearable electronics and healthcare monitoring. The associated elastic environments require not only flexibility of the NG, but also stretchability in order for it to remain operational. Current NGs are rarely functional without being coupled to rigid or, at best, flexible substrates, due to the lack of proper methodology for fabrication of both stretchable electrodes as well as stretchable high performance PZ nanomaterials, that together make up PZ NGs. Thus, the Action aims to (i) develop micro/nano-patterned electrode fabrication techniques based on electronic printing on flexible/stretchable substrates, (ii) develop polymer-based PZ materials with tailored elastic properties to satisfy stretchability and flexibility criteria, marking a departure from traditional PZ materials that are ceramic in nature and hence stiff and brittle, and (iii) study the efficiency of the stretchable NGs developed, based on simulations and direct measurements of energy harvesting (EH) performance in elastic environments. The Action will address pressing EH challenges such as scalability and cost of fabrication of stretchable NGs, and enhancement of energy conversion efficiency over a wide range of deformation scenarios, with an aim to broaden the application of NGs to EH in biological and other extreme environments. The Action will be implemented in a multidisciplinary and innovative research environment at the University of Cambridge, with unique opportunities for the applicant to further his academic career.

 Publications

year authors and title journal last update
List of publications.
2018 Canlin Ou, Abhijeet L. Sangle, Thomas Chalklen, Qingshen Jing, Vijay Narayan, Sohini Kar-Narayan
Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites
published pages: 96101, ISSN: 2166-532X, DOI: 10.1063/1.5043547
APL Materials 6/9 2019-04-02
2018 Canlin Ou, Abhijeet L. Sangle, Anuja Datta, Qingshen Jing, Tommaso Busolo, Thomas Chalklen, Vijay Narayan, Sohini Kar-Narayan
Fully Printed Organic–Inorganic Nanocomposites for Flexible Thermoelectric Applications
published pages: 19580-19587, ISSN: 1944-8244, DOI: 10.1021/acsami.8b01456
ACS Applied Materials & Interfaces 10/23 2019-04-02
2016 Yonatan Calahorra, Richard A. Whiter, Qingshen Jing, Vijay Narayan, Sohini Kar-Narayan
Localized electromechanical interactions in ferroelectric P(VDF-TrFE) nanowires investigated by scanning probe microscopy
published pages: 116106, ISSN: 2166-532X, DOI: 10.1063/1.4967752
APL Materials 4/11 2019-04-02
2017 Michael Smith, Yonatan Calahorra, Qingshen Jing, Sohini Kar-Narayan
Direct observation of shear piezoelectricity in poly- l -lactic acid nanowires
published pages: 74105, ISSN: 2166-532X, DOI: 10.1063/1.4979547
APL Materials 5/7 2019-04-02
2018 Qingshen Jing, Sohini Kar-Narayan
Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications
published pages: 303001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aac827
Journal of Physics D: Applied Physics 51/30 2019-04-02
2017 Yeon Sik Choi, Qingshen Jing, Anuja Datta, Chess Boughey, Sohini Kar-Narayan
A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting
published pages: 2180-2189, ISSN: 1754-5692, DOI: 10.1039/c7ee01292f
Energy & Environmental Science 10/10 2019-04-02
2017 Edward Tan, Qingshen Jing, Michael Smith, Sohini Kar-Narayan, Luigi Occhipinti
Needs and Enabling Technologies for Stretchable Electronics Commercialization
published pages: 1721-1729, ISSN: 2059-8521, DOI: 10.1557/adv.2017.2
MRS Advances 2/31-32 2019-04-02
2019 Qingshen Jing, Yeon Sik Choi, Michael Smith, Nordin Ćatić, Canlin Ou, Sohini Kar-Narayan
Aerosol-Jet Printed Fine-Featured Triboelectric Sensors for Motion Sensing
published pages: 1800328, ISSN: 2365-709X, DOI: 10.1002/admt.201800328
Advanced Materials Technologies 4/1 2019-02-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPENG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPENG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More