Opendata, web and dolomites


Stretchable Piezoelectric Nanogenerators for Energy Harvesting in Elastic Environments

Total Cost €


EC-Contrib. €






 SPENG project word cloud

Explore the words cloud of the SPENG project. It provides you a very rough idea of what is the project "SPENG" about.

harvesting    vital    coupled    stretchable    flexible    electronics    constant    simulations    printing    conversion    biological    efficiency    energy    methodology    lack    flow    fabrication    extreme    ngs    environment    environments    electrical    pz    scenarios    departure    stiff    supersede    attractive    academic    stretchability    wearable    nano    pressing    scalability    nature    generation    ubiquitous    movements    functional    healthcare    ng    electronic    criteria    broaden    convert    small    body    piezoelectric    fixed    materials    batteries    satisfy    ceramic    career    techniques    nanoscale    substrates    power    polymer    performance    nanomaterials    sources    recharging    action    rigid    replacing    vibrations    multidisciplinary    patterned    cambridge    deformation    brittle    innovative    flexibility    implantable    eh    electrode    epidermal    hence    micro    harvesters    university    elastic    enhancement    electrodes    scavenging    blood    direct    route    rarely    offers    monitoring    proper    marking    nanogenerators    autonomous    revolutionize   

Project "SPENG" data sheet

The following table provides information about the project.


Organization address
postcode: CB2 1TN

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2018-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Nanoscale piezoelectric (PZ) energy harvesters, or nanogenerators (NGs), are vital for next-generation autonomous devices as they can directly convert small-scale vibrations, such as blood flow and body movements, into electrical energy. Scavenging power from ubiquitous vibrations in this way offers an attractive route to supersede fixed power sources such as batteries that need constant replacing/recharging. In particular, epidermal or implantable PZ NGs could revolutionize wearable electronics and healthcare monitoring. The associated elastic environments require not only flexibility of the NG, but also stretchability in order for it to remain operational. Current NGs are rarely functional without being coupled to rigid or, at best, flexible substrates, due to the lack of proper methodology for fabrication of both stretchable electrodes as well as stretchable high performance PZ nanomaterials, that together make up PZ NGs. Thus, the Action aims to (i) develop micro/nano-patterned electrode fabrication techniques based on electronic printing on flexible/stretchable substrates, (ii) develop polymer-based PZ materials with tailored elastic properties to satisfy stretchability and flexibility criteria, marking a departure from traditional PZ materials that are ceramic in nature and hence stiff and brittle, and (iii) study the efficiency of the stretchable NGs developed, based on simulations and direct measurements of energy harvesting (EH) performance in elastic environments. The Action will address pressing EH challenges such as scalability and cost of fabrication of stretchable NGs, and enhancement of energy conversion efficiency over a wide range of deformation scenarios, with an aim to broaden the application of NGs to EH in biological and other extreme environments. The Action will be implemented in a multidisciplinary and innovative research environment at the University of Cambridge, with unique opportunities for the applicant to further his academic career.


year authors and title journal last update
List of publications.
2018 Canlin Ou, Abhijeet L. Sangle, Thomas Chalklen, Qingshen Jing, Vijay Narayan, Sohini Kar-Narayan
Enhanced thermoelectric properties of flexible aerosol-jet printed carbon nanotube-based nanocomposites
published pages: 96101, ISSN: 2166-532X, DOI: 10.1063/1.5043547
APL Materials 6/9 2019-04-02
2018 Canlin Ou, Abhijeet L. Sangle, Anuja Datta, Qingshen Jing, Tommaso Busolo, Thomas Chalklen, Vijay Narayan, Sohini Kar-Narayan
Fully Printed Organic–Inorganic Nanocomposites for Flexible Thermoelectric Applications
published pages: 19580-19587, ISSN: 1944-8244, DOI: 10.1021/acsami.8b01456
ACS Applied Materials & Interfaces 10/23 2019-04-02
2016 Yonatan Calahorra, Richard A. Whiter, Qingshen Jing, Vijay Narayan, Sohini Kar-Narayan
Localized electromechanical interactions in ferroelectric P(VDF-TrFE) nanowires investigated by scanning probe microscopy
published pages: 116106, ISSN: 2166-532X, DOI: 10.1063/1.4967752
APL Materials 4/11 2019-04-02
2017 Michael Smith, Yonatan Calahorra, Qingshen Jing, Sohini Kar-Narayan
Direct observation of shear piezoelectricity in poly- l -lactic acid nanowires
published pages: 74105, ISSN: 2166-532X, DOI: 10.1063/1.4979547
APL Materials 5/7 2019-04-02
2018 Qingshen Jing, Sohini Kar-Narayan
Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications
published pages: 303001, ISSN: 0022-3727, DOI: 10.1088/1361-6463/aac827
Journal of Physics D: Applied Physics 51/30 2019-04-02
2017 Yeon Sik Choi, Qingshen Jing, Anuja Datta, Chess Boughey, Sohini Kar-Narayan
A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting
published pages: 2180-2189, ISSN: 1754-5692, DOI: 10.1039/c7ee01292f
Energy & Environmental Science 10/10 2019-04-02
2017 Edward Tan, Qingshen Jing, Michael Smith, Sohini Kar-Narayan, Luigi Occhipinti
Needs and Enabling Technologies for Stretchable Electronics Commercialization
published pages: 1721-1729, ISSN: 2059-8521, DOI: 10.1557/adv.2017.2
MRS Advances 2/31-32 2019-04-02
2019 Qingshen Jing, Yeon Sik Choi, Michael Smith, Nordin Ćatić, Canlin Ou, Sohini Kar-Narayan
Aerosol-Jet Printed Fine-Featured Triboelectric Sensors for Motion Sensing
published pages: 1800328, ISSN: 2365-709X, DOI: 10.1002/admt.201800328
Advanced Materials Technologies 4/1 2019-02-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPENG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPENG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More