Opendata, web and dolomites

MoGEs SIGNED

Modelling of Generic Extreme mass-ratio inspirals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MoGEs project word cloud

Explore the words cloud of the MoGEs project. It provides you a very rough idea of what is the project "MoGEs" about.

waves    inspirals    ratio    turn    simplifying    combining    simpler    orbits    calculate    tests    gsf    scheme    data    sum    binaries    emris    immediately    objects    models    proposes    formalism    ligo    local    equation    capitalize    accurate    spin    observatories    semi    gravitational    circular    time    extracted    expertise    map    einstein    motion    self    ongoing    elisa    linear    virgo    wealth    upcoming    physical    reconstructing    eccentric    era    equatorial    regular    extreme    aei    force    inclination    moges    inspiralling    eob    detection    perturbation    regularization    pipelines    albert    searches    fundamental    previously    teukolsky    particle    first    momentum    observation    combination    generate    latter    mode    improvements    source    metric    compact    proven    precise    redshift    solutions    emri    relativity    mass    eccentricity    angular    analytical    hosts    geometry    astronomy    body    effectiveness    gw    correction    gws    spacetime    mst    assumptions    spinning    yield    until    calculated    evolution   

Project "MoGEs" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: Munich
postcode: 80539
website: www.mpg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://mvdmeent.wordpress.com/moges/
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2019-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (Munich) coordinator 171˙460.00

Map

 Project objective

Inspiralling binaries of compact objects are a promising source of gravitational waves (GWs) in the upcoming era of GW astronomy. The MoGEs project proposes to take the next step in modelling the evolution of compact binaries using the gravitational self-force (GSF) formalism. Until now, the linear-in-mass-ratio GSF has only been calculated under the simplifying assumptions of non-spinning, circular, and/or equatorial binaries. MoGEs will, for the first time, calculate linear-in-mass-ratio GSF including all effects of spin, eccentricity and inclination.

This is achieved by reconstructing the local metric perturbation produced by a particle from solutions of the Teukolsky equation, which in turn are obtained using the semi-analytical MST formalism. The regular correction to the motion of the particle is then extracted using a mode-sum regularization scheme. The applicant has previously proven this combination of methods effective in the simpler case of equatorial orbits.

Knowledge of the GSF will allow the modelling of the evolution of extreme mass-ratio inspirals (EMRIs) and the GWs that they generate. Accurate modelling of the latter is essential if they are to be observed by future GW observatories such as eLISA. Observation of GWs from an EMRI would yield a wealth of physical information, from precise measurements of physical characteristics of the observed system (including mass, angular momentum, and redshift) to fundamental tests of general relativity by providing an accurate map of the spacetime geometry generated by the system.

More immediately, MoGEs will capitalize on the new GSF data by combining the expertise of the applicant and the hosts at the Albert Einstein Institute (AEI) to improve the effectiveness of effective-one-body (EOB) models for eccentric spinning binaries. Any such improvements can directly be deployed in the ongoing GW searches at LIGO and Virgo, that already use EOB models in their detection pipelines.

 Publications

year authors and title journal last update
List of publications.
2019 Andrea Antonelli, Alessandra Bounanno, Jan Steinhoff, Maartem van de Meent, Justin Vines
Energetics of two-body Hamiltonians in post-Minkowskian gravity
published pages: , ISSN: 2470-0029, DOI:
Physical Review D 2019-06-06
2018 Donato Bini, Thibault Damour, Andrea Geralico, Chris Kavanagh, Maarten van de Meent
Gravitational self-force corrections to gyroscope precession along circular orbits in the Kerr spacetime
published pages: 104062, ISSN: 2470-0029, DOI: 10.1103/PhysRevD.98.104062
Physical Review D 98/10 2019-04-18
2018 Maarten van de Meent, Niels Warburton
Fast self-forced inspirals
published pages: 144003, ISSN: 0264-9381, DOI: 10.1088/1361-6382/aac8ce
Classical and Quantum Gravity 35/14 2019-04-18
2018 Maarten van de Meent
Gravitational self-force on generic bound geodesics in Kerr spacetime
published pages: 104033, ISSN: 2470-0029, DOI: 10.1103/PhysRevD.97.104033
Physical Review D 97/10 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOGES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOGES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

LICONAMCO (2019)

Light-controlled nanomagnetic computation schemes

Read More