Opendata, web and dolomites

CHEPHYTSSU

Structural Engineering of 2D Atomic Planes towards Task-Specific, Freestanding Superstructures through Combined Physical-Chemical Pathway

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHEPHYTSSU project word cloud

Explore the words cloud of the CHEPHYTSSU project. It provides you a very rough idea of what is the project "CHEPHYTSSU" about.

amphiphilicity    oxide    atomic    create    consideration    designed    boron    structural    bonded    sequence    2d    co2    electrode    environmental    relationship    unraveled    chemical    inner    purification    scalable    freestanding    material    technological    layers    physically    energy    surface    storage    planes    hexagonal    structure    individual    conversion    sustainable    superstructures    gas    oxides    hydrophilic    fundamentally    library    mesopores    selective    water    supercapacitor    geim    steady    interface    superstructure    combined    engineering    nanomaterials    flexibility    materials    mechanically    physical    units    performance    urgent    separation    placing    chemistry    functionalized    tailoring    engineer    shape    endows    stability    functionalities    derivatives    2004    metal    ordered    phililc    mechanical    layer    outer    flexible    nitride    novoselov    boomed    amphiphilic    hybrid    confined    oriented    blank    discovery    graphene    capture    chalcogenides    nanoparticles    decade    manner    photovoltatic    hydrophobic    professors    conductive    crystals    researches   

Project "CHEPHYTSSU" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.graphene.manchester.ac.uk/about/ngi/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-07-25   to  2018-07-24

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 195˙454.00

Map

 Project objective

The research on 2D nanomaterials has boomed since the discovery of graphene by professors Geim and Novoselov in 2004. After a decade of steady development, the available library of 2D crystals is highly rich including graphene derivatives, hexagonal boron nitride, many chalcogenides and various oxides. However, the technological advances and urgent environmental and sustainable energy issues such as CO2 capture and separation, energy storage and conversion (photovoltatic system, supercapacitor etc) call for advanced materials with not only properties of individual layers but also new functionalities. Particularly, researches on superstructures with unique properties such as amphiphilicity still remain blank. Physically, it is now possible to create such hybrid superstructures by placing different 2D crystals on top of each other in a designed sequence; while engineering the 2D units through a chemical way endows a high flexibility in surface chemistry tailoring and increase the mechanical stability due to the strongly bonded interface. Taking these into consideration, here we propose a combined chemical-physical pathway to engineer task-specific, mechanically freestanding superstructures based on 2D atomic planes in a simple and scalable manner. Three new material concepts are proposed including amphiphilic superstructure (hydrophilic outer layer and hydrophobic inner layer), gas selective superstructure (CO2-phililc outer layer and gas shape selective inner layer) and flexible superstructure with outer layer functionalized with metal oxide nanoparticles confined in ordered mesopores and inner conductive graphene. The obtained superstructures with these structural features will be oriented environmental and sustainable energy issues such as CO2 capture and separation, water purification and flexible electrode. Finally, structure-performance relationship will be unraveled fundamentally.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHEPHYTSSU" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHEPHYTSSU" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

StressOME (2019)

Defining and modulating the stress granule proteome as a therapeutic strategy in Amyotrophic Lateral Sclerosis

Read More  

INTEGRIN REGULATION (2019)

Functional analysis of the kinome and phosphatome as determinants of integrin phosphorylation in cancer

Read More  

TERMINATOR (2019)

Ribosomal frameshifts as a novel mechanism to control RNA turnover in stress

Read More