Opendata, web and dolomites


A High-Sensitive Green Localization System for High-Speed Self-Driving Vehicles

Total Cost €


EC-Contrib. €






Project "GREENLOC" data sheet

The following table provides information about the project.


Organization address
address: -
postcode: 41296

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Project website
 Total cost 185˙857 €
 EC max contribution 185˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-08-01   to  2019-08-14


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Among the main goals of Intelligent Transportation Systems are (i) safety: reducing threats encountered due to human impact, and (ii) efficiency: providing transportation opportunities in an ecologically and economically sustainable way. Self-driving vehicles (SDV) have the potential to achieve both goals, for which localization (i.e., the determination of the positon and velocity of the vehicle) is of key importance. Localization is challenging due to the variety of conditions (weather, clutter, obstructions) that may impede different sensors, as well as the strict latency requirements. Accurate and fast localization is a necessity for providing crash-safe high-speed SDVs. Furthermore, reducing energy costs introduced by the continuous localization process is required for reducing the frequency to charge an SDV. Current SDV localization technology is insufficient in meeting these three performance measures at the same time, requiring a different approach for high-speed SDVs. This project proposes a high-sensitive fast green relative localization system, called as GREENLOC, which obtains and shares the relative location of surrounding vehicles and road-side units by ultra-wideband cross-layer communications in a multi-hop vehicular ad-hoc network. GREENLOC is the first localization system, which enables crash-safe SDVs driving not only on highways close to speed limits, but also in congested low-speed traffic. Moreover, GREENLOC is the first localization method that works accurately even in difficult weather conditions. This project has the potential to shift Europe forward in the international competitive race of SDVs, making crash-safe high-speed SDVs possible, which in turn has the potential to solve the traffic congestion problem. Besides, this fellowship is an excellent opportunity for the experienced researcher, who is enthusiastic about realizing her idea in an international research environment after a long period of parental leave dedicated to her family.


year authors and title journal last update
List of publications.
2019 Aydogdu, Canan; Garcia, Nil; Wymeersch, Henk
Radar Communication for Combating Mutual Interference of FMCW Radars
published pages: , ISSN: , DOI:
1 2020-02-12
2018 Aydogdu, Canan; Garcia, Nil; Wymeersch, Henk
A Solution for Removing Automotive Radar Interference: Radar Communications
published pages: , ISSN: , DOI:
Swedish Transportation Research Conference 1 2020-02-12

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GREENLOC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GREENLOC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More