Opendata, web and dolomites

DOMINO

The Development of a Multiscale Modeling Framework for Investigating Marine Soft Clays

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DOMINO" data sheet

The following table provides information about the project.

Coordinator
CHALMERS TEKNISKA HOEGSKOLA AB 

Organization address
address: -
city: GOETEBORG
postcode: 41296
website: www.chalmers.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Project website https://www.chalmers.se/en/staff/Pages/Matias-Nordin.aspx
 Total cost 185˙857 €
 EC max contribution 185˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CHALMERS TEKNISKA HOEGSKOLA AB SE (GOETEBORG) coordinator 185˙857.00

Map

 Project objective

The planning and construction on or in soft marine clays has been proven to remain a challenge for geotechnical engineering. These type of clays are often instable, difficult to characterize and reinforce (i.e. ground improvement), and very common in coastal areas all over the world. The presence of marine soft clays are often the reason for landslides, with hazardous consequences. The complexity of these natural material has hindered the understanding of how macroscopic properties (>meters) such as instability, translates to microscopic (<micrometer) phenomena. As a result, the complex behavior of marine soft clays observed on the continuum scale is not fully understood and the models based on this experimental data are phenomenological. Yet, it is the properties and processes occurring on the microscale that govern the material response properties of these clays.

This proposal aims to develop a multiscale framework for investigating marine soft clays. The objectives to reach this aim are the development of an anisotropic aggregation model for clay, the development of simple model materials with well-defined chemical and mechanical properties, and the comparison of these simplified models with naturally occurring soft marine clays. The proposed research use concepts from aggregation theory in combination with simulations of macroscopic material properties such as stiffness, strength and permeability. Experimental methods consists of state-of-the-art material characterization techniques such as: Nuclear Magnetic Resonance Relaxometry, Time-Resolved Dynamic Light Scattering, chemical analysis methods and mechanical characterization using advanced Bishop Wesley cells. The planned work is a bottom-up approach, where simple model materials substitute the natural more complex ones and aid the development of multiscale soil constitutive models.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DOMINO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DOMINO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

PHOTOCARBOX (2020)

Increasing the scope of CO2-utilising photoreactions: asymmetric photosynthesis of amino acids

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More