Opendata, web and dolomites

HIVOL SIGNED

Herbivore-induced emissions of biogenic volatiles from arctic plants under climate warming

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HIVOL" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-08-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 212˙194.00

Map

 Project objective

Biogenic volatile organic compounds (BVOCs) play important roles in biosphere-atmosphere interactions. However, it remains unexplored how climate warming and concomitant increase in insect herbivory interact to influence emissions of BVOCs from arctic plants. This greatly limits the current understanding of the complex abiotic and biotic processes controlling BVOC emissions in arctic ecosystems, and hampers the development of appropriate BVOC emission models. Here, I propose a project that will assess 1) how climate warming influences insect herbivory on dominant woody plants in the Arctic, 2) how insect herbivory, both alone and in conjunction with warming, influences plant BVOC emissions, and 3) how to integrate herbivory effects into the existing emission model to estimate these effects at the landscape scale. The project takes an interdisciplinary approach involving insect science, environmental science, chemical ecology and ecosystem modeling, and it combines my research experience on biotic control of BVOC emissions and the expertise that the host has on the bidirectional exchange of BVOCs between the ecosystems and the atmosphere in the Arctic. This forms a strong basis for making the project a success. The importance of biotic control of BVOC emissions in the Arctic is unknown and this project will generate pioneer results that are awaited in the scientific community. The outputs of this project will lead to important scientific breakthroughs and improve our comprehension of the factors driving BVOC emissions as well as the ecological and atmospheric functioning of BVOCs in the rapidly changing Arctic. The project will also lead to novel collaborations due to the strong complementarity between my own research and the research of the host and collaborators. The expected high-quality publications, practice training and interdisciplinary collaborations will be valuable assets that support my career development towards full independence.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HIVOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HIVOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MITafterVIT (2020)

Unravelling maintenance mechanisms of immune tolerance after termination of venom immunotherapy by means of clonal mast cell diseases

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

NeuroTick (2019)

The neuroscience of tickling: cerebellar mechanisms and sensory prediction

Read More