Opendata, web and dolomites

Cynthetica SIGNED

Development of tools to increase product yields in cyanobacteria using a synthetic biology approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Cynthetica" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme /MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 200˙194.00

Mappa

 Project objective

Cyanobacteria are versatile photosynthetic organisms that have attracted interest as a sustainable biotechnological host chassis. The toolkit for these organisms is growing fast, however, limitations such as low productivities are still a major drawback for this emerging technology. Cynthetica will address the issue of recombinant product yields and develop two separate tools that can be universally applied for product synthesis in cyanobacteria. WP1 incorporates the development of an ‘anchor tool’ to increase stability and the interaction of membrane-bound recombinant enzymes, such as cytochrome P450s, in cyanobacterial thylakoid membranes via membrane anchor engineering. This will lead to improved metabolic fluxes through the pathway and, thus, higher product yields. In WP2 a ‘capsule tool’ will be developed. Cyanobacterial strains with proteinaceous shells, so-called microcompartments, will be generated to encapsulate biosynthetic pathways for improved product yields. In WP3 the Cynthetica tools will be tested at scale for their applicability in an industrial setting during a secondment with the partner organisation AGROT. The intersectoral knowledge transfer between UCPH, AGROT and the fellow will allow for timely progression of the project, delivering cutting edge science and allowing the fellow to grow not only her scientific skill set but also reach maturity as an academic researcher. Thanks to the state-of-the art equipment and expertise available at UCPH and AGROT the project will have most favourable conditions to be a success. The Horizon 2020 framework highlights the need to develop a sustainable biotechnology sector in Europe. Cynthetica will position itself at the forefront of this emerging field by delivering innovative synthetic biology tools for establishing cyanobacteria as a powerful photosynthetic production platform.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CYNTHETICA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CYNTHETICA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

THALLMORPHAL (2018)

Insight into the Symbiotic Chemical Communication of Algae and Bacteria: Thallusin and Dedicated Analogues

Read More  

SmallDrugRheuma (2018)

Discovery of Immune Therapeutic Targets and Immunomodulators for the Development of Novel Therapies in Rheumatoid Arthritis.

Read More  

MuSeq (2018)

Defining the Oligodendrocyte Lineage in Multiple Sclerosis Lesions by Single Cell RNA-Sequencing

Read More