Opendata, web and dolomites

SAS6-Cep135-CPAP

Towards a molecular understanding of the centriole assembly process

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SAS6-Cep135-CPAP" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.bioch.ox.ac.uk/vakonakislab
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-07-01   to  2019-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00

Map

 Project objective

The centriole is a conserved organelle essential for cell organisation, division and motility through its capacity to organise microtubules. A broad range of human diseases, such as microcephaly and cancer, have been associated with defects in centriole formation, making the full characterisation of its assembly process of great interest. Centrioles are miniature cylinders of characteristic symmetry, diameter and length, yet the molecular methods by which these parameters are defined are only partly understood. The objective of this proposal is to study the structure – function relationship of the centriolar proteins SAS-6, Cep135 and CPAP, which together form a protein interaction network that supports centriole elongation and connects the core centriole scaffold with its microtubule-based exterior. This project will be carried out through an integrated, multi-disciplinary approach combining structural biology, biophysics and functional assays in human cell lines. We will investigate the effect of disease-causing mutations in the structure and function of the SAS-6 – Cep135 – CPAP network. This work will boost our understanding of the centriole formation process and how it is perturbed in disease, and be a pioneering example of elucidating the molecular architecture of a cell organelle.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAS6-CEP135-CPAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAS6-CEP135-CPAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More