Opendata, web and dolomites

GrapheneBiosensor SIGNED

Electrochemical Graphene Sensors as Early Alert Tools for Algal Toxin Detection in Water

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GrapheneBiosensor project word cloud

Explore the words cloud of the GrapheneBiosensor project. It provides you a very rough idea of what is the project "GrapheneBiosensor" about.

exposure    inhibiting    laboratory    sources    algal    worldwide    waste    animals    liquid    biochemical    guideline    acute    mass    expensive    anthropogenic    chromatography    spectrometry    potent    alternatives    sensitive    performance    area    provisional    toxin    poisonings    times    death    occurrence    potentials    eutrophication    algae    time    conventional    skills    instruments    microcystins    humans    physical    had    material    agricultural    massive    ing    sophisticated    candidate    frequently    aqueous    mc    immunosensors    protein    conductivity    pp2a    limit    manufacturing    2a    toxic    prolonged    monitoring    damage    warming    blooms    urban    graphene    active    bio    1998    ms    broad    hplc    ease    electrochemically    probably    off    demanding    followed    purpose    prevent    harmful    assays    immune    fit    contained    blue    portable    detect    world    lr    responsible    situ    bodies    concentration    ppl    run    surface    quality    electrochemical    electrical    health    global    biosensors    rapid    water    phosphatases    detergents    episodes    assigned    cyanobacteria    intrahepatic    microcystin    drinking    organization    liver    consuming    functionalization    mu    confirmed    hemorrhage    solutions   

Project "GrapheneBiosensor" data sheet

The following table provides information about the project.

Coordinator
SWANSEA UNIVERSITY 

Organization address
address: SINGLETON PARK
city: SWANSEA
postcode: SA2 8PP
website: www.swan.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-26   to  2019-11-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SWANSEA UNIVERSITY UK (SWANSEA) coordinator 195˙454.00

Map

 Project objective

Episodes of harmful blue algae blooms and the associated algal toxin microcystin-LR (MC-LR) occur frequently in bodies of water worldwide as consequences of eutrophication resulting from anthropogenic activities such as agricultural run-off, urban waste, and manufacturing of detergents and global warming. It had been confirmed that microcystins were responsible for some poisonings of animals and humans where water sources contained toxic cyanobacteria blooms. Microcystins were potent and specific in inhibiting protein phosphatases 1 and 2A (PPl, PP2A). Acute or prolonged exposure to microcystins would cause liver damage, followed by a massive intrahepatic hemorrhage and probably leading to death. In 1998, the provisional guideline concentration limit of 1 μg/L MC-LR in drinking water was assigned by the World Health Organization (WHO). The development of reliable methods for monitoring MC-LR in water resources is of great interest to determine the occurrence and to prevent exposure to the toxin. Several methods have been developed to detect MC-LR, such as high-performance liquid chromatography/mass spectrometry (HPLC/MS) , bio-, biochemical- and immune-assays, which require long processing times, sophisticated instruments, complex procedures, or high processing cost and are in general used in the laboratory, not in situ. A sensitive, specific, simple, and rapid method for monitoring MC-LR could help to prevent exposure to the toxin. The unique physical and electrochemical properties (e.g., high electrical conductivity, ease of functionalization, high electrochemically active surface area, and broad range of working potentials in aqueous solutions) of graphene make them a candidate material for developing novel and fit-for-purpose electrochemical biosensors/immunosensors as alternatives to the time-consuming, expensive, non-portable and often skills-demanding conventional methods of analysis involved in water quality assessment.

 Publications

year authors and title journal last update
List of publications.
2018 Wei Zhang, Mike B. Dixon, Christopher Saint, Kar Seng Teng, Hiroaki Furumai
Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art
published pages: 1233-1245, ISSN: 2379-3694, DOI: 10.1021/acssensors.8b00359
ACS Sensors 3/7 2020-02-27
2018 Wei Zhang, Baoping Jia, Hiroaki Furumai
Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-28959-w
Scientific Reports 8/1 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAPHENEBIOSENSOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAPHENEBIOSENSOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NarrowbandSSL (2019)

Development of Narrow Band Blue and Red Emitting Macromolecules for Solution-Processed Solid State Lighting Devices

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

RegulatioNFkB (2019)

Deciphering transcriptional regulation of NF-kB target genes using integrative omics approaches

Read More