Opendata, web and dolomites

FLUINEMS SIGNED

Suspended Fluidic nanochannels as optomechanical sensors for single molecules

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FLUINEMS project word cloud

Explore the words cloud of the FLUINEMS project. It provides you a very rough idea of what is the project "FLUINEMS" about.

eppendorf    early    molecules    types    there    detect    discard    novelty    fresh    detection    fernandez    variety    relevance    sensing    plasmonic    events    nanoengineering    versatile    rate    molecule    combined    monitoring    counted    earlier    cheap    suspend    collaborators    screening    ceo    capsides    raman    diagnosing    cancer    expertise    optical    concentration    diffraction    curie    oncoviruses    environmental    became    klinikum    chip    hamburg    iof    interdisciplinary    bioapplications    biochemical    10    university    universal    solution    cuesta    lives    clinical    spectroscopy    concentrations    nanofabrication    international    protein    ideal    medicine    environment    preventive    extremely    expert    nano    saves    detects    platform    mass    molecular    90    purified    integrate    microrna    one    bio    counts    starting    marie    she    antennas    benefited    environments    biotoxins    nanotechnology    physics    identifies    worked    water    founder    instrumentation    cancers    survival    start    plasma    recognition    plasmonics    biomarkers    single    dr    multiple    proof    nanochannels    co    smart    lack    binding    usually   

Project "FLUINEMS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET HAMBURG 

Organization address
address: MITTELWEG 177
city: HAMBURG
postcode: 20148
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www.ifc-lab.com
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET HAMBURG DE (HAMBURG) coordinator 1˙500˙000.00

Map

 Project objective

Early detection of cancer saves lives: the survival rate increases from 10% to 90%. Today, there is a lack of methods for the early detection of different types of cancer. The main challenge is that a large variety of specific biomarkers have to be counted, and usually at extremely low concentrations. Here we will use smart nanoengineering to develop a versatile sensing platform that detects, identifies and counts single molecules, one by one, in a non-purified solution. The main novelty of the proposal is that the platform will integrate optical sensing beyond diffraction (for biochemical recognition) and on-chip molecular mass sensing (to discard non-specific binding events). For this, we will suspend state-of-the-art nanochannels and integrate them with plasmonic nano-antennas. This will make for a versatile, universal test, cheap enough to be used for preventive screening. It will help diagnosing different types of cancers earlier. We will detect and identify oncoviruses capsides, different protein biomarkers and microRNA in plasma. These are very high impact proof of concepts with clinical relevance. Dr. Fernandez-Cuesta has expertise in single molecule sensing and has worked in multiple international, interdisciplinary environments. She is expert in nanofabrication and plasmonics for (bio)sensing. She benefited from an IOF Marie Curie. She became CEO and co-founder of a start-up, dedicated to on-chip Raman spectroscopy for environmental monitoring of biotoxins concentration in fresh water. Currently, she is at the department for Applied Physics at the University of Hamburg. There, there is state-of-the-art instrumentation for nanofabrication. The collaborators at Hamburg University Klinikum Eppendorf have expertise in applying research to medicine. This interdisciplinary environment is ideal for starting a new field in combined plasmonics and mass sensing with a focus on nanotechnology for bioapplications of clinical relevance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLUINEMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLUINEMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

VictPart (2019)

Righting Victim Participation in Transitional Justice

Read More