Opendata, web and dolomites

CLUNATRA SIGNED

Discovering new Catalysts in the Cluster-Nanoparticle Transition Regime

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CLUNATRA project word cloud

Explore the words cloud of the CLUNATRA project. It provides you a very rough idea of what is the project "CLUNATRA" about.

explored    mass    nitrides    particle    fundamental    reactions    setting    reaction    instrument    simulations    adding    entities    chemicals    overarching    reactivity    energy    added    size    conventional    activated    scalable    co2    n2    barely    provides    synthesis    gt    progress    devoted    sustainable    area    purpose    intermediates    sulfides    clusters    synthesizing    fuels    completely    lack    nanoparticle    subsequently    difficult    inorganic    transition    breakthroughs    active    oxides    chemical    amount    hydrogen    break    characterization    recipient    limited    phosphides    employ    interactive    behavior    scaling    loop    atom    efficient    electrochemical    drastic    material    interdisciplinary    hypothesis    landscape    regime    atomic    enhanced    thereby    optimized    nanoparticles    thermally    catalyst    flat    unexplored    cluster    losses    dft    discovery    away    methodology    relations    catalytic    catalysts    solar    ides    nm    freedom    exist   

Project "CLUNATRA" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

Organization address
address: ANKER ENGELUNDSVEJ 1 BYGNING 101 A
city: KGS LYNGBY
postcode: 2800
website: www.dtu.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-ADG
 Funding Scheme ERC-ADG
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) coordinator 2˙500˙000.00

Map

 Project objective

The purpose of this proposal is to establish new fundamental insight of the reactivity and thereby the catalytic activity of oxides, nitrides, phosphides and sulfides (O-, N-, P-, S- ides) in the Cluster-Nanoparticle transition regime. We will use this insight to develop new catalysts through an interactive loop involving DFT simulations, synthesis, characterization and activity testing. The overarching objective is to make new catalysts that are efficient for production of solar fuels and chemicals to facilitate the implementation of sustainable energy, e.g. electrochemical hydrogen production and reduction of CO2 and N2 through both electrochemical and thermally activated processes. Recent research has identified why there is a lack of significant progress in developing new more active catalysts. Chemical scaling-relations exist among the intermediates, making it difficult to find a reaction pathway, which provides a flat potential energy landscape - a necessity for making the reaction proceed without large losses. My hypothesis is that going away from the conventional size regime, > 2 nm, one may break such chemical scaling-relations. Non-scalable behavior means that adding an atom results in a completely different reactivity. This drastic change could be even further enhanced if the added atom is a different element than the recipient particle, providing new freedom to control the reaction pathway. The methodology will be based on setting up a specifically optimized instrument for synthesizing such mass-selected clusters/nanoparticles. Thus far, researchers have barely explored this size regime. Only a limited amount of studies has been devoted to inorganic entities of oxides and sulfides; nitrides and phosphides are completely unexplored. We will employ atomic level simulations, synthesis, characterization, and subsequently test for specific reactions. This interdisciplinary loop will result in new breakthroughs in the area of catalyst material discovery.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CLUNATRA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CLUNATRA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

AST (2019)

Automatic System Testing

Read More