Opendata, web and dolomites


Characterizing neural mechanisms underlying the efficiency of naturalistic human vision

Total Cost €


EC-Contrib. €






 NATVIS project word cloud

Explore the words cloud of the NATVIS project. It provides you a very rough idea of what is the project "NATVIS" about.

simultaneously    relevance    regularities    hypothesized    data    neural    tackles    characterizing    guidance    world    environments    attentional    contain    overwhelming    memory    reduce    internally    optimally    dynamics    amount    meg    scene    representation    perform    multitude    ing    embracing    interactions    living    presenting    uses    tms    predictions    scenes    interact    vision    complexity    goals    hypothesis    rapid    reflected    object    city    gap    naturalistic    life    natural    cortical    fmri    cars    disambiguated    multivariate    brain    natvis    sensory    neuroscience    powerful    brains    episodic    fill    frontier    clutter    little    representational    basis    street    templates    causal    represented    selective    mechanisms    function    characterization    detection    full    bias    select    grouping    expectations    efficient    objects    context    daily    multiple    streets    crossing    positional    remarkable    underlying    content    recognition    cortex    functional    efficiency    presented    regularity    our    visual    rooms   

Project "NATVIS" data sheet

The following table provides information about the project.


Organization address
postcode: 6525 EZ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙978˙194 €
 EC max contribution 1˙978˙194 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2022-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Our daily-life visual environments, such as city streets and living rooms, contain a multitude of objects. Out of this overwhelming amount of sensory information, our brains must efficiently select those objects that are relevant for current goals, such as cars when crossing a street. The visual system has developed and evolved to optimally perform tasks like these, as reflected in the remarkable efficiency of naturalistic object detection. Little is known about the neural mechanisms underlying this efficiency. NATVIS aims to fill this gap, presenting a comprehensive multi-method and hypothesis-driven approach to improve our understanding of the neural mechanisms underlying the efficient detection of objects in natural scenes. fMRI, MEG, and TMS will be used to study the neural basis of rapid attentional guidance based on scene context and episodic memory, resulting in a full characterization of when, where, and how context- and memory-based expectations interact with attentional templates in visual cortex and beyond. The powerful effects of scene context on object recognition will be studied by testing how context-disambiguated objects are represented in visual cortex, characterizing when context-based predictions bias object processing, and testing for causal interactions between scene- and object-selective pathways in visual cortex. NATVIS will study how the brain uses real-world regularities to support object grouping and reduce clutter in scenes, modelling the cortical representation and neural dynamics of multiple simultaneously presented objects as a function of positional regularity. Finally, advanced multivariate modelling of fMRI data will test the functional relevance and representational content of internally generated templates that are hypothesized to facilitate object detection in scenes. This program of research tackles the next frontier in the neuroscience of high-level vision and attention, embracing the complexity of naturalistic vision.


year authors and title journal last update
List of publications.
2019 Talia Brandman, Marius V. Peelen
Signposts in the Fog: Objects Facilitate Scene Representations in Left Scene-selective Cortex
published pages: 390-400, ISSN: 0898-929X, DOI: 10.1162/jocn_a_01258
Journal of Cognitive Neuroscience 31/3 2020-02-19
2018 Elisa Battistoni, Daniel Kaiser, Clayton Hickey, Marius V. Peelen
The time course of spatial attention during naturalistic visual search
published pages: 10, ISSN: 0010-9452, DOI: 10.1016/j.cortex.2018.11.018
Cortex 2020-02-19
2019 Harish Katti, Marius V. Peelen, S. P. Arun
Machine vision benefits from human contextual expectations
published pages: 12, ISSN: 2045-2322, DOI: 10.1038/s41598-018-38427-0
Scientific Reports 9/1 2020-02-19
2018 Daniel Kaiser, Marius V. Peelen
Transformation from independent to integrative coding of multi-object arrangements in human visual cortex
published pages: 334-341, ISSN: 1053-8119, DOI: 10.1016/j.neuroimage.2017.12.065
NeuroImage 169 2020-02-19
2018 Sushrut Thorat, Marcel van Gerven, Marius Peelen
The functional role of cue-driven feature-based feedback in object recognition
published pages: , ISSN: , DOI: 10.32470/ccn.2018.1044-0
2018 Conference on Cognitive Computational Neuroscience 2020-02-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NATVIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NATVIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

MuFLOART (2018)

Microbiological fluorescence observatory for antibiotic resistance tracking

Read More  

AST (2019)

Automatic System Testing

Read More