Opendata, web and dolomites

bloodANDbone SIGNED

Blood and bone – conjoined twins in health and disease: bone marrow analogs for hematological and musculoskeletal diseases

Total Cost €


EC-Contrib. €






 bloodANDbone project word cloud

Explore the words cloud of the bloodANDbone project. It provides you a very rough idea of what is the project "bloodANDbone" about.

applicability    biological    basis    metastasis    environment    balance    laden    scalability    reciprocal    drugs    vitro    healthy    tissues    marrow    prerequisite    bases    closely    stromal    simplified    understand    bone    stem    disease    capacity    onset    cell    ground    progression    limitations    hypothesis    purpose    treatments    hscs    re    blood    establishing    cure    strategies    tunable    biochemical    breaking    mutual    biomaterials    physical    treatment    myeloma    hematopoietic    little    events    kinds    crosstalk    surprisingly    human    influenced    multiple    medicine    hematological    mscs    team    leukemia    beings    biomimetic    models    suitability    multipotent    intertwined    mesenchymal    health    progeny    intrinsic    relationship    versatility    paid    maintained    capacities    analog    disturbed    animals    cells    diseases    regenerative    incidence    screening    previously    musculoskeletal    macroporous    create    natural    impaired   

Project "bloodANDbone" data sheet

The following table provides information about the project.


Organization address
address: Welfengarten 1
postcode: 30167

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website
 Total cost 1˙499˙920 €
 EC max contribution 1˙499˙920 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Blood and bone are closely intertwined. Their intrinsic regenerative capacities are disturbed in many hematological and musculoskeletal diseases. Re-establishing the regenerative potential is the key to cure these diseases by regenerative medicine. Multipotent stem cells of both tissues – hematopoietic stem cells (HSCs) for blood and mesenchymal stem/stromal (MSCs) for bone – are the basis for their regenerative capacity. While it is well established that HSCs are influenced by the bone marrow in their natural environment including MSCs and their progeny, surprisingly little attention has been paid to the reciprocal relationship. The hypothesis of the current proposal is that only when taking both tissues and their mutual crosstalk into account, we will be able to understand how the regenerative potential of blood and bone is impaired in disease and how it can be re-established with novel treatment strategies. For this purpose we need to understand the early events of disease onset and progression. Due to the limitations of such studies in human beings and animals, I propose to develop human in vitro models of healthy bone marrow, which can be induced to develop hematological and musculoskeletal diseases with high incidence, namely leukemia, multiple myeloma and bone metastasis. Previously my team and I developed a simplified bone marrow analog that bases on macroporous, cell-laden biomaterials with tunable physical, biochemical and biological properties. This versatility will enable us to create biomimetic human in vitro models of the human bone marrow in health and disease, which are ground-breaking in their applicability to investigate how the regenerative balance of bone marrow is maintained in health and disturbed in the different kinds of diseases – a prerequisite to develop novel regenerative treatments – as well as their scalability and thus suitability as in vitro test systems for screening of novel drugs or treatments.


year authors and title journal last update
List of publications.
2019 Annamarija Raic, Frank Friedrich, Domenic Kratzer, Karen Bieback, Joerg Lahann, Cornelia Lee-Thedieck
Potential of electrospun cationic BSA fibers to guide osteogenic MSC differentiation via surface charge and fibrous topography
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-019-56508-6
Scientific Reports 9/1 2020-02-19
2019 Domenic Kratzer, Anita Ludwig-Husemann, Katharina Junges, Udo Geckle, Cornelia Lee-Thedieck
Nanostructured Bifunctional Hydrogels as Potential Instructing Platform for Hematopoietic Stem Cell Differentiation
published pages: , ISSN: 2296-8016, DOI: 10.3389/fmats.2018.00081
Frontiers in Materials 5 2019-11-18
2019 Annamarija Raic, Toufik Naolou, Anna Mohra, Chandralekha Chatterjee, Cornelia Lee-Thedieck
3D models of the bone marrow in health and disease: yesterday, today, and tomorrow
published pages: 37-52, ISSN: 2159-6859, DOI: 10.1557/mrc.2018.203
MRS Communications 9/01 2019-11-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BLOODANDBONE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BLOODANDBONE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

HOLI (2019)

Deep Learning for Holistic Inference

Read More  


Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More