Opendata, web and dolomites

CHOPIN SIGNED

Coatings with Hydrophobic and/or Omniphobic Properties against INsect contamination.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHOPIN project word cloud

Explore the words cloud of the CHOPIN project. It provides you a very rough idea of what is the project "CHOPIN" about.

elastic    spray    assessing    last    requirement    concerned    shown    uv    resistance    chopin    commercial    coatings    rain    erosion    airplanes    deposition    sand    aircraft    liquids    cleaning    drag    hydrophobic    tests    contamination    fuel    dry    durable    energy    statistical    roughness    covers    hardness    substrates    impacting    demonstrated    presently    classification    disrupting    durability    simulated    insect    researches    plasma    adherence    soluble    surface    keep    wing    realistic    coating    causes    shows    meet    films    hlfc    fluid    flexibility    adhesion    aircrafts    efficiency    flight    lack    consumption    technologies    drones    mitigation    critical    industry    obtain    preserve    flow    surfaces    environment    off    holes    considering    laminar    landing    validation    wings    playing    edges    perforated    chemistry    evaluation    wet    mitigate    modifications    optimized    firstly    micro    sticking    representative    lab   

Project "CHOPIN" data sheet

The following table provides information about the project.

Coordinator
MATERIA NOVA 

Organization address
address: AVENUE N COPERNIC 3
city: MONS
postcode: 7000
website: www.materia-nova.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website http://www.chopin-project.eu/
 Total cost 1˙529˙893 €
 EC max contribution 1˙499˙268 € (98%)
 Programme 1. H2020-EU.3.4.5.1. (IADP Large Passenger Aircraft)
 Code Call H2020-CS2-CFP06-2017-01
 Funding Scheme CS2-IA
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MATERIA NOVA BE (MONS) coordinator 512˙122.00
2    INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES BE (RHODE SAINT GENESE) participant 418˙450.00
3    FUNDACION CIDETEC ES (SAN SEBASTIAN) participant 347˙812.00
4    NORCE NORWEGIAN RESEARCH CENTRE AS NO (BERGEN) participant 150˙883.00
5    BERTHIER ETUDES FR (VAULX EN VELIN) participant 70˙000.00
6    NORUT NORTHERN RESEARCH INSTITUTE AS NO (TROMSO) participant 0.00

Map

 Project objective

The aircraft industry has long been concerned with the increase of drag impacting directly the fuel consumption of airplanes. Different researches have shown that the insect sticking causes a surface roughness disrupting the laminar flow. Several methods have been used to solve the problem and the most important parameter playing a role in the reduction of insect adhesion on aircraft wings is the surface energy. Indeed, during the last 60 years different modifications of the wing leading edges such as elastic surfaces, soluble films or fluid covers have been proposed. The use of coatings to mitigate the insect contamination shows great potential but critical issues still remain due to lack of durability. The objectives of CHOPIN are the development of highly durable hydrophobic coatings which can be applied to micro-perforated surfaces typically used for drag reduction and the validation of the technology and the coating process proposed by using tests clearly assessing the mitigation of insect contamination under realistic conditions. Different technologies are considered in the project which presently allows to obtain hydrophobic surfaces : wet-chemistry deposition and dry technologies (plasma and spray). To meet the application requirement these coatings will be optimized. Furthermore, the application process needs to preserve the holes and keep the efficiency of the HLFC leading edges. The efficiency of the proposed technologies will be compared to the commercial products and the coatings will be characterized by lab and simulated tests. Indeed, firstly, a classification considering the adherence to the substrates, the hardness, the flexibility, UV resistance, rain and sand erosion resistance and the resistance to aircrafts liquids will be done. The insect contamination and cleaning behaviour of the best coatings will be then demonstrated both, during simulated environment and during representative environment. Test under real condition will be done using drones which will allow a statistical evaluation of the insect impact and contamination behaviour of typical A/C leading edges under realistic A/C environment during take-off, landing and flight.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHOPIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHOPIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.1.)

C-ALM AOHE (2019)

Compact - Additive Layer Manufactured Air Oil Heat Exchanger

Read More  

PROTEUSS (2019)

Pressurised Rotational Oil Transfer – Experimental Unit & System

Read More  

LIFT (2018)

Lightweight Innovative Generator for Future Air Transportation

Read More