Opendata, web and dolomites

Stress Granules SIGNED

Using Reconstituted Stress Granules to Gain Insight into the Molecular Pathology of Neurodegenerative Diseases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Stress Granules project word cloud

Explore the words cloud of the Stress Granules project. It provides you a very rough idea of what is the project "Stress Granules" about.

mrnas    influence    offers    alberti    dissect    myself    ras    leaders    frontotemporal    independent    biology    depends    uniquely    place    lobar    promoted    disease    proteins    world    diseases    labs    liquid    ultimately    cutting    g3bp1    granules    turn    assist    facilities    training    solidify    sgs    dynamics    stress    elucidate    harmful    vitro    cell    protect    crucially    protein    degeneration    age    persist    tool    interactions    when    positioning    expert    amyotrophic    health    components    granule    little    extensive    sclerosis    first    convert    activating    mutations    aggregates    droplet    edge    form    association    groups    prevention    career    generate    teams    resemble    sg    droplets    normal    behave    store    longer    time    synthesis    cells    dissolve    underlie    gtpase    minimal    pauses    harnessing    critically    ground    breaking    physiological    academia    implicated    causing    transition    despite    situated    me    binding    researcher    hyman    neurodegenerative    lateral    mechanistically    fellowship    death    human    molecular   

Project "Stress Granules" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 159˙460.00

Map

 Project objective

When cells experience stress, most protein synthesis pauses and so-called stress granules (SGs) form which store and protect mRNAs. SGs are crucial for stress adaptation and prevention of cell death. However, SGs are also implicated in age-related neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, SGs persist longer than normal and turn into harmful aggregates which cells cannot dissolve.

Despite the importance for human health, we only know very little about how normal SGs convert into disease-causing aggregates. Ground breaking work from the Hyman and Alberti labs could recently demonstrate that SGs behave like liquid droplets which solidify over time. Importantly, this transition is promoted by disease-associated mutations in SG components.

SGs form through protein-protein interactions which critically depends on the Ras GTPase-activating protein-binding protein 1 (G3BP1). The Hyman and Alberti labs could recently generate G3BP1 droplets in vitro and could show that droplet formation is promoted by mRNAs. For the first time, we have a minimal SG system that can be used as a tool to mechanistically dissect SG formation and disease association. I propose harnessing this system to generate complex droplets that resemble physiological SGs. Ultimately, my objective is to elucidate how proteins with disease-causing mutations influence SG properties and dynamics, thus allowing me to identify the molecular changes that underlie neurodegenerative diseases.

The proposed work is to take place in the teams of A Hyman and S Alberti, world leaders in the field of liquid droplets. Both groups are uniquely situated in the same institute which offers cutting-edge facilities and extensive training opportunities. The fellowship would crucially assist me in my future career objective: positioning myself as an expert in the field of granule biology and developing into an independent researcher in academia.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRESS GRANULES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRESS GRANULES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More