Opendata, web and dolomites

Stress Granules SIGNED

Using Reconstituted Stress Granules to Gain Insight into the Molecular Pathology of Neurodegenerative Diseases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Stress Granules project word cloud

Explore the words cloud of the Stress Granules project. It provides you a very rough idea of what is the project "Stress Granules" about.

interactions    expert    persist    tool    degeneration    form    world    facilities    normal    disease    underlie    synthesis    time    sg    minimal    lateral    g3bp1    granules    breaking    groups    prevention    biology    transition    little    amyotrophic    liquid    assist    depends    fellowship    protein    elucidate    harmful    despite    mechanistically    resemble    cells    components    pauses    proteins    granule    droplets    mrnas    ras    sgs    protect    vitro    stress    career    association    activating    when    ultimately    dynamics    independent    crucially    neurodegenerative    death    situated    harnessing    offers    generate    gtpase    academia    human    age    implicated    first    causing    labs    solidify    binding    dissolve    alberti    physiological    place    sclerosis    health    me    cell    critically    dissect    behave    hyman    turn    ground    aggregates    training    frontotemporal    promoted    researcher    lobar    longer    uniquely    influence    positioning    leaders    extensive    mutations    droplet    teams    diseases    myself    cutting    molecular    store    edge    convert   

Project "Stress Granules" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 159˙460.00

Map

 Project objective

When cells experience stress, most protein synthesis pauses and so-called stress granules (SGs) form which store and protect mRNAs. SGs are crucial for stress adaptation and prevention of cell death. However, SGs are also implicated in age-related neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. In these diseases, SGs persist longer than normal and turn into harmful aggregates which cells cannot dissolve.

Despite the importance for human health, we only know very little about how normal SGs convert into disease-causing aggregates. Ground breaking work from the Hyman and Alberti labs could recently demonstrate that SGs behave like liquid droplets which solidify over time. Importantly, this transition is promoted by disease-associated mutations in SG components.

SGs form through protein-protein interactions which critically depends on the Ras GTPase-activating protein-binding protein 1 (G3BP1). The Hyman and Alberti labs could recently generate G3BP1 droplets in vitro and could show that droplet formation is promoted by mRNAs. For the first time, we have a minimal SG system that can be used as a tool to mechanistically dissect SG formation and disease association. I propose harnessing this system to generate complex droplets that resemble physiological SGs. Ultimately, my objective is to elucidate how proteins with disease-causing mutations influence SG properties and dynamics, thus allowing me to identify the molecular changes that underlie neurodegenerative diseases.

The proposed work is to take place in the teams of A Hyman and S Alberti, world leaders in the field of liquid droplets. Both groups are uniquely situated in the same institute which offers cutting-edge facilities and extensive training opportunities. The fellowship would crucially assist me in my future career objective: positioning myself as an expert in the field of granule biology and developing into an independent researcher in academia.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRESS GRANULES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRESS GRANULES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

DECEYEDE (2020)

The effects of aging in the control of eye movements and its relation to perceptual and motor decisions

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More