Opendata, web and dolomites

AnBIOSST SIGNED

Anaerobic Biotechnology for Sewage Sludge Treatment: Integrating Anaerobic Bioleaching with Anaerobic Digestion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "AnBIOSST" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 172˙800 €
 EC max contribution 172˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-18   to  2020-06-17

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 172˙800.00

Map

 Project objective

During wastewater treatment, a significant amount of sewage sludge (SS) is generated as a by-product, with an estimated production in Europe alone of 2 bio tons/yr. SS use as fertilizer and anaerobic digestion are 2 disposal routes that comply with current legislative guidelines on waste disposal and environment. Anaerobic digestion (AD) is widely applied, resulting in volume reduction and biogas production. However, high heavy metal (HM) contents in SS impede the use of raw SS or AD effluent to be used as fertilizer. Bioleaching is based on the activity of Fe-and S-oxidizing microbes, capable of degrading metal sulfides and solubilizing HM. Because of its potential to remove HMs from solid matrices, bioleaching has been considered as a promising technique for both raw SS and AD effluent. In this regard, studies have been performed on conventional oxidative bioleaching approach (OBL). However, the rate of HM dissolution through OBL is slow, it requires aeration and addition of leaching agents (acids, bases, etc), which increases costs. Also, the inevitable formation of by-products limits the process efficiency. Recently, anaerobic bioleaching (ABL) has been a choice to recover HMs of different sources,with benefits of acid production and minimization of by-products. However, up to now, ABL has not been introduced in SS treatment. Furthermore, the application of ABL to sewage sludge prior to AD digestion offers various potential advantages: (i) the bio-availability of HM (which serve as micronutrients to AD microorganisms) is increased, (ii) volatile fatty acids (VFA), very important AD intermediates, are produced; and (iii) the sludge is already in a reduced state before in enters the digesters. In this research project, we will obtain essential knowledge about (1) ABL as sludge treatment, and (2) the effect of ABL on the efficiency of subsequent AD. By filling these gaps in knowledge, we are one step closer to a clean-up and valorisation strategy for sewage sludge.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ANBIOSST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ANBIOSST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More